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1 Introduction

Symmetries play a central role in physics. They dictate what one can change in a physical
system without affecting any of its properties. You might have encountered symmetries like
translational symmetry, where a system remains unchanged if it is spatially translated by an
arbitrary distance. A system with rotational symmetry however is invariant under rotations.
Some symmetries, like the ones mentioned above, give information about the structure of
the system. Others have to do with the more fundamental physical framework that we
adopt. An example for this is the invariance under Lorentz transformations in relativistic
physics.

Other types of symmetries can be even more subtle. For example, it is rather self-evident
that physics should remain unchanged if we exchange two identical point-like particles.
Nevertheless, this fundamental property that we call statistical symmetry gives rise to rich
and beautiful physics. In three spatial dimensions it dictates the existence of bosons and
fermions. These are particles with very different quantum mechanical properties. Their
wave function acquires a +1 or a −1 phase, respectively, whenever two particles are ex-
changed. A direct consequence of this is that bosons can actually occupy the same state.
In contrast, fermions can only be stacked together with each particle occupying a different
state.

When one considers two dimensions, a wide variety of statistical behaviours is possible.
Apart from bosonic and fermionic behaviours, arbitrary phase factors, or even non-trivial
unitary evolutions, can be obtained when two particles are exchanged [1]. Particles with
such an exotic statistics have been named anyons by Frank Wilczek [2]. The transfor-
mation of the anyonic wave function is consistent with the exchange symmetry. Indeed,
similarly to the fermionic case the anyonic exchange transformations are not detectable by
local measurements on the particles. This “indirect” nature of the statistical transforma-
tions of anyons is at the core of their intellectual appeal. It also provides the technological
advantage of anyonic systems in performing quantum computation that is protected from
a malicious environment.

1.1 Particle exchange and quantum physics

Statistics, as arising from indistinguishability of particles, is a quantum mechanical prop-
erty. Classical particles are always distinguishable as we can keep track of their position
at all times. Quantum mechanically, the position of a particle is determined via a spatially
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extended wave function. The wave functions of two particles might overlap even if they
are not peaked at exactly the same position. Hence the position is, in general, not a good
property for identifying particles, thereby making it impossible to define distinguishabil-
ity in a fundamental way. This suggests to adopt a common wave function to describe the
system of the two particles.

Indistinguishable particles in quantum mechanics should have all their intrinsic prop-
erties, such as mass, charge, spin and any other quantum number exactly the same. This
seemingly innocent property has far reaching consequences. It allows us to construct uni-
versal theories to describe elementary particles based on simple statistical rules. More dra-
matically, it forces us to adopt the new framework of statistical physics that abandons the
distinguishability of particles.

Exchange statistics describe the change in the wave function of two identical particles,
when they are exchanged. Its properties need to be compatible with the symmetry imposed
by indistinguishability. As an important consequence these changes are independent of
many details of the system. Consider, for example, the case where the exchange is not a
mathematical procedure, but a physical process of moving two particles along an exchange
path. The effect of this transport on the wave function should not depend on the particular
shape of the path taken by the particles when they are exchanged or the speed the path is
traversed. Nevertheless, the evolution might still depend on some global, topological char-
acteristics of the path, such as the number of times the particles are exchanged. Statistical
evolutions are hence topological in their nature.

In three spatial dimensions the indistinguishability of particles allows for the possibility
of having bosons and fermions. Bosons satisfy the Bose-Einstein distribution [3, 4] and
fermions the Fermi-Dirac distribution [5, 6]. These distributions emerge from the general
requirement that an ensemble of indistinguishable particles are described either by com-
pletely symmetric or completely antisymmetric wave functions with respect to particle
exchanges. The first case corresponds to bosons and the second to fermions. In particular,
when two fermions are positioned on the top of each other their state should be simultane-
ously symmetric and antisymmetric giving zero as the only possible solution. This gives
rise to the Pauli exclusion principle that assigns zero probability to such configurations.
However, there is no such restriction for the case of bosons which can freely occupy the
same position.

Another surprising consequence of indistinguishability is the relation between spin and
statistics. Pauli proved that bosons have integer spin and fermions half-integer spin [7].
This is a rather surprising relation as spin is an intrinsic property that can be determined by
considering an isolated particle. Contrarily, to determine the statistics we need to consider
an ensemble of at least two particles. We shall visit this relation again later on and we shall
generalise it to the case of anyons where exotic statistical behaviours give rise to equally
exotic values of spins.
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1.2 Anyons and topological systems

Statistics is spectacularly manifested in two-dimensional systems. There, exotic wave func-
tions of particles can emerge that give rise to anyons. The study of anyons started as a theo-
retical curiosity in two-dimensional models [2]. However, it was soon realised that they can
be encountered in physical systems with effective two-dimensional behaviour. For exam-
ple, gases of electrons confined on thin films in the presence of sufficiently strong magnetic
field and at a sufficiently low temperature give rise to the fractional quantum Hall effect
[8, 10, 11]. The low energy excitations of these systems are localised quasiparticle excita-
tions that exhibit anyonic statistics. Beyond the fractional quantum Hall effect other two-
dimensional systems have emerged which theoretically support anyons [9]. These range
from superconductors [105] and topological insulators [130] to spin lattice models.

Systems that support anyons are called topological as they inherit the topological prop-
erties of the anyonic statistical evolutions. Topological systems are usually many-particle
systems that support localised excitations, so-called quasiparticles, that can exhibit any-
onic behaviour. In general, they have highly entangled degenerate ground states. As a
consequence local order parameters, such as the magnetisation, are not able to describe
topological phases. So we need to employ non-local order parameters. Various character-
istics exist that identify topological order, such as ground state degeneracy, edge states in
the presence of a gapped bulk, topological entanglement entropy or the explicit detection
of anyons. As topological order comes in various forms, the study and characterisation of
topological systems in their generality is complex and still an open problem. Over the last
years the richness in the behaviour of two-dimensional topological systems has inspired
many scientists. One of the most thought provoking ideas is to use topological systems for
quantum computation.

1.3 Quantum computation with anyons

In the last decades progress in physics and the understanding of nature have advanced
the way we perceive information. Quantum physics has opened the possibility of yet an-
other way of storing, manipulating and transmitting information. Importantly, quantum
computers have been proposed with the ability to outperform their classical counterparts
thereby promising far reaching consequences. Quantum computation requires the encoding
of quantum information and its efficient manipulation with quantum gates [12]. Qubits, the
quantum version of classical bits, provide an elementary encoding space. Quantum gates
manipulate the qubits to eventually perform a computation. A universal quantum computer
employs a sufficiently large set of gates in order to perform arbitrary quantum algorithms.
In recent years, there have been two main quests for quantum computation. First, to find
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new algorithms, that go beyond the already discovered algorithms of searching [13] and
factorizing [14]. Second, to perform quantum computation that is resilient to errors.

In the Nineties a surprising connection was made. It was argued by Castagnoli and
Rasetti that anyons could be employed to perform quantum computation [15]. Kitaev [16]
demonstrated that anyons could actually be used to perform fault-tolerant quantum com-
putation. This was a very welcomed advance as errors infest any physical realisation of
quantum computation, coming from the environment or from control imperfections. Shor
[17] and Steane [18] independently demonstrated that for sufficiently isolated quantum
systems and for sufficiently precise quantum gates, quantum error correction can allow
fault-tolerant computation. However, the required thresholds are too stringent and demand
a large overhead in qubits and quantum gates for error correction to be realised. In contrast
to this, anyonic quantum computation promises to resolve the problem of errors from the
hardware level.

Topological systems can serve as quantum memories or as quantum computers. They
can encode information in a way that is protected from environmental perturbations. In
fact, topological systems have already proven to be a serious candidate for constructing
fault-tolerant quantum hard disks. The intertwining of anyons and quantum information in
topological systems is performed in an unusual way. Information is encoded in the possi-
ble outcomes when bringing two anyons together. This information is not accessible when
the anyons are kept apart and hence it is protected. The exchange of anyons gives rise to
statistical logical gates. In this way anyons can manipulate information with very accurate
quantum gates, while keeping the information hidden at all times. If the statistical evolu-
tions are complex enough then they can realise arbitrary quantum algorithms. Fundamental
properties of anyonic quasiparticles can thus become the means to perform quantum com-
putation. Fault-tolerance simply stems from the ability to keep these quasiparticles intact.
The result is a surprisingly effective and aesthetically appealing method for performing
fault-tolerant quantum computation.

1.4 Abelian and non-Abelian anyonic statistics

It is commonly accepted that in three spatial dimensions indistinguishable particles, ele-
mentary or not, come in two species: bosons or fermions. The possibility for these statisti-
cal behaviours can be obtained from a simple thought experiment. Consider two identical
particles in three dimensions, where one of them circulates the other via the path C1, as
shown in Figure 1.1(a). As we are only interested in the statistical behaviour of these parti-
cles we focus on the topological characteristics of this process. These characteristics should
be independent of details such as the particular geometry of the path or direct interactions
between the particles. Hence, we can continuously deform the path C1 to the path C2. This
involves only local deformations of the evolution without cutting or otherwise drastically
changing the nature of the path. In its turn path C2 can be continuously deformed to a triv-
ial path, C0, that keeps the particle at its initial position at all times. As a consequence the
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tFig. 1.1 (a) A particle spans a loop around another one. In three dimensions it is possible to
continuously deform the path C1 to the path C2, which is equivalent to a trivial path, C0. (b) Two
successive exchanges between two particles are equivalent to a circulation of one particle
around the other and a translation.
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tFig. 1.2 In two dimensions the two paths C1 and C2 are topologically distinct. This gives the possibility of
having non-trivial phase factors appearing when one particle circulates around the other. In
other words, one can assign a non-trivial unitary to the evolution corresponding to path C1.

wave function, Ψ(C1), of the system after the circulation has to be exactly the same as the
original one Ψ(C0), i.e.

Ψ(C1) = Ψ(C2) = Ψ(C0). (1.1)

Figure 1.1(b) depicts a single exchange of two particles. If we perform two of these ex-
changes in succession then we obtain a full circulation of one particle around the other
accompanied by an irrelevant spatial translation. Thus, a single exchange can result in a
phase factor eiϕ that has to square to unity in order to be consistent with (1.1). This has two
solutions, ϕ = 0 and ϕ = π corresponding to the bosonic and fermionic statistics, respec-
tively. These are the only statistical behaviours that can exist in three spatial dimensions.

When we restrict ourselves to two spatial dimensions, then we are faced with a wealth
of possible statistical evolutions. If the particle circulation C1 is performed on a plane, as
shown in Figure 1.2, then it is not possible to continuously deform it to the path C2, as
we do not have access to an extra dimension to lift the loop and undo the linking. To do
that would necessitate cutting the path, passing it over the circulated particle and glueing
it again, thus changing in-between its topological characteristics. Still the evolution that
corresponds to C2 is equivalent to the trivial evolution. As we are not able to deform the
evolution of path C1 to the trivial one the argument we employed in the three-dimensional
case does not apply any more. Actually, now, it is possible to assign an arbitrary phase fac-
tor, or even a whole unitary operator, to the evolution corresponding to C1 that is equivalent
to two successive exchanges. Thus, particles in two dimensions can have rich statistical be-
haviours.

We would like now to analyse the difference between phase factors and unitary operators
as statistical evolutions. In the former case the anyons are known as Abelian, and the statis-
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tical phase factor can take any value between the bosonic case of eiϕb = 1 and the fermionic
case of eiϕf = −1. In fact it is the possibility of these particles having any statistics that led
to the name “anyon” [2]. Nevertheless, the statistics of a specific anyon type is always well
defined and a given pair will always yield the same statistical phase. This phase therefore
characterises the species of the exchanged anyons.

Beyond a phase factor it is possible to have a statistical evolution that is more complex.
Certain species of anyons called non-Abelian give rise to an exchange evolution that can
actually lead to a higher-dimensional unitary matrix. In contrast to phase factors matrices
do not in general commute, which motives the name “non-Abelian”. For a matrix statisti-
cal evolution to emerge the wave function that describes the particles needs to be part of a
degenerate subspace of states. The particle exchange then transforms between states in this
subspace without changing the energy of the system. Nevertheless, there is an important
constraint we need to impose on the statistical evolution in order to be in agreement with
the exchange symmetry. To preserve the physics when two identical non-Abelian anyons
are exchanged we required that the degenerate states should be non-distinguishable if one
looks at each anyon individually. As a result interchanging these anyons causes a trans-
formation within this state subspace that is not detectable by local measurements giving
a valid statistical transformation. One would need to perform non-local operations, like
bringing these anyons close together in order to distinguish between these states and ob-
serve the effect of statistics. It is rather surprising that consistent particle theories exist that
have such exotic behaviours as the non-Abelian statistics. Before characterising these the-
ories we shall first investigate the physical principles that allow this behaviour to emerge.

1.5 What are anyonic systems?

The study of anyons becomes even more exciting when the possibility arises to realise them
in the laboratory. To date it is believed that Abelian anyons have already been detected in
the laboratory [11] and there is strong evidence for the existence of non-Abelian anyons
[19]. But how is it possible to construct a purely two-dimensional world, where the exotic
properties of anyons can emerge? In order to determine how plausible this is we need
to identify the main characteristics of anyons. Only then we can decide whether we can
physically realise topological systems that can support anyons.

1.5.1 Two-dimensional wave functions and quasiparticles

Admittedly, our physical world appears to be three and not two-dimensional. This is also
well manifested in the statistical properties of the elementary particles accounted for in
nature, bosons and fermions. The natural question then arises: how is it possible to obtain
a two-dimensional world where anyons can emerge? Even if we make a system arbitrarily
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thin it is impossible to trick nature into believing that it is reduced to two dimensions.
To the rescue comes quantum mechanics. It is possible to construct a quantum system
with a wave function that splits, via the separation of variables method, to a purely two-
dimensional and a one-dimensional part. This is a crucial first step that we analyse in more
detail below.

To determine the behaviour of a particle in three spatial dimensions with position r =

(x, y, z), subject to a potential of the form

V(r) = Vxy(x, y) + Vz(z), (1.2)

we can employ the separation of variables method. In this case the wave function can be
written as

Ψ(r) = Ψxy(x, y)Ψz(z), (1.3)

where Ψxy(x, y) satisfies the two-dimensional Schrödinger equation subject to the poten-
tial Vxy(x, y) and Ψz(z) satisfies a one-dimensional Schrödinger equation subject to Vz(z).
Hence, the wave function Ψxy(x, y) is purely two-dimensional with its dynamics decoupled
from the third direction z.

Consider now the system being homogeneously confined along the z direction. The low
energy levels corresponding to this trapping are discrete. For strongly confining potentials
the typical energy splitting, ∆E, between these levels is large. Let us take the particle to
be initially prepared in the ground state. If the particle is subject to additional dynamics
like a perturbation, beyond the trapping potential, with a scale much smaller than ∆E,
then the particle will remain in the same energy level. This is an important mechanism for
reducing the dimensionality of the system from three to two by suppressing the motion in
the third direction. It also preserves the system in the subspace of states that exhibit the
desired anyonic properties by suppressing the generation of unwanted excitations. Under
these conditions the behaviour of the system is essentially given by the two-dimensional
wave function Ψxy(x, y).

It is important to notice that the finite energy scales that either isolate the anyonic be-
haviour of the reduced state Ψxy(x, y) from spurious excitations or suppress the motion
in the third direction is the Achilles’ heel that makes anyonic systems fragile. Indeed,
when perturbations or temperature are strong enough compared to these energy scales then
either the anyonic characteristics are washed out or the state of the system stops being
two-dimensional. Hence, we need to keep track of such spurious effects in order to ensure
reliable anyonic behaviour. Needless to say that if we had a truly two-dimensional system
then anyons would be fundamental particles and they would be robust even at much higher
energies. This sensitivity of effective anyonic models is a main challenge for topological
quantum computation.

The particles that are subject to the above conditions do not actually see only two di-
mensions, but their wave function becomes effectively two-dimensional. Hence, we cannot
expect the constituent particles to automatically acquire anyonic properties. Nevertheless,
we could expect that effective particles, so-called quasiparticles, emerge from the proper-
ties of wave functions that are truly two-dimensional. In Figure 1.3 a many-particle sys-
tem is shown and the possible emergence of quasiparticles is described. Quasiparticles are
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(a)! (b)! (c)!

tFig. 1.3 (a) A system with constituent particles confined on a plane that give rise to a two-dimensional
wave function. (b) Quasiparticles are identified as localised properties of the two-dimensional
wave function of the constituent particles. (c) Often we forget the constituent particles and we
treat the quasiparticles as elementary ones living on the two-dimensional space.

entities defined through the wave function of a many particle system. They behave like
particles, i.e. they have local properties and they respond to their local environment. Such
a behaviour emerges for example, when the constituent particles of the system interact in
such a way that they give rise to exotic, highly correlated wave functions. Importantly,
quasiparticles can have properties that are completely different from the properties of the
constituent particles. One could expect that anyonic properties could emerge in this way.
This is indeed the case for all known examples of topological systems, ranging from the
fractional quantum Hall effect to spin lattice systems that exhibit topological behaviour.
Hence, the search for anyons becomes intrinsically related to the study of strongly corre-
lated quantum mechanical systems.

Another aspect of the quasiparticle nature of anyons is that all anyons emerge from the
same wave function of the whole system. They are aware of each others’ position which
makes it possible to exhibit the desired exchange statistics. More concretely, the exchange
statistics emerges as an evolution operator of this wave function that depends on the history
of the constituent particles. We shall see in the next chapter that the statistical evolutions
of anyons can manifest themselves as geometric phases of the global wave function of the
system.

1.5.2 Symmetry, degeneracy and quantum correlations

From the previous subsection it becomes apparent that anyons, emerging as quasiparticle
states of a many-particle system, are purely quantum mechanical objects. Now we would
like to discuss how strongly correlated these topological systems need to be in order to give
rise to anyonic properties. To be concrete we consider two anyonic properties which are
tightly connected to quantum correlations of the constituent particles. First, we intuitively
approach the invariance of statistical evolutions in terms of continuous deformations of the
paths used to exchange the quasiparticles. Second, we analyse the non-Abelian character
which is manifested as an evolution acting on degenerate ground states.

The statistical transformation occurring under exchange of the quasiparticles should be
the same for arbitrary shapes of the path chosen for the exchange, as long as they can be
continuously deformed into each other. This is an important property that gives rise to the
topological character of statistical evolutions. It is equivalent to requiring invariance of the
evolution when the coordinates of the system are continuously deformed or in other words
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when the spanned paths are continuously deformed. The transport of quasiparticles can be
described by products of local operators that act on the states of the constituent particles of
the system. In order to have evolutions that are invariant under continuous deformations of
the paths the states of the system need to be invariant under the action of particular local
configurations of such operators. The set of all possible path deformations is large giving
rise to an equivalently large set of operators that leave invariant the states of the system. As
we shall see in the following chapters this symmetry requirement can be satisfied by states
that are highly correlated.

Consider now the case where the system exhibits non-Abelian statistics. In this case the
statistical evolution is a unitary matrix that acts on a state space, whose states should all
have the same energy. Otherwise, transforming between them along an exchange would not
correspond to a statistical symmetry. Hence, a degenerate subspace is required to encode
such statistical evolutions. In order for the corresponding evolution to be statistical, these
states should not be distinguishable in any local way, i.e. no obvious local characteristic
should exist that witnesses the statistical evolution. In other words statistical symmetry
imposes that local observables should remain invariant under statistical evolutions.

How can a degeneracy between locally indistinguishable states give information about
correlations of the system? It is understood that a local symmetry creates a degeneracy in
the system. The distinction between such degenerate states can be observed with a local
operator. Therefore, the local symmetry mechanism cannot be responsible for creating the
degeneracy of non-Abelian anyonic systems. It is known that strongly correlated systems
often exhibit degeneracy in the ground state that does not correspond to local symmetries.
Such strongly correlated systems are prime candidates for creating the degeneracy required
by a topological system that supports non-Abelian statistics.

Summary

In this Chapter we introduced the concept of particle statistics. Very simple principles
restrict the statistical behaviour of particles in three spatial dimensions to be only bosonic
or fermionic. In two dimensions particles are allowed to exhibit exotic statistics. These
can be described by phase factors or whole unitary matrices instead of a plus or a minus
sign that corresponds to bosons or fermions, respectively. These exotic particles are called
anyons.

We want to employ the statistical evolutions of anyons as a novel way to perform quan-
tum computation. This promises to efficiently overcome the problem of errors that prohibit
the reliable storing and manipulation of quantum information. Employing anyons for such
technological tasks requires better understanding of their properties. We also need to in-
vestigate in detail the properties of the topological systems that support anyons.

Anyons are expected to emerge as localised properties, so-called quasiparticles, in the
wave function of many-particle systems. We argued that these wave functions need to be
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highly correlated if they are to support anyonic statistics. The study of highly correlated
quantum systems that can support anyons is the topic of subsequent chapters in this book.

Exercises

1.1 By considering the wave function Ψ(r1, r2) of two fermions at positions r1 and r2

show explicitly that the Fermi statistics and the Pauli exclusion principle are com-
patible.

1.2 In two spatial dimensions it is possible to construct non-trivial topological config-
urations from a point and and a looping string. For example, the configuration of
a string enclosing the point is topologically non-equivalent to a loop that does not
enclose it, as shown in Figure 1.2. What type of geometrical objects do we need in
order to construct topological configurations in one, three and four dimensions?

1.3 Consider a potential of the form

V(r) = Vxy(x, y) + Vz(z) + g(y, z).

Treating g(y, z) as a small or a large perturbation compared to both Vxy(xy) and Vz(z)
show when the separation of variables method breaks down precluding the dimen-
sional reduction of the corresponding wave function.



2 Geometric and topological phases

Anyonic statistics is manifested by phase factors resulting from moving two anyons around
each other. This physical process closely resembles the Aharonov-Bohm effect [20]. There,
the wave function of a charged particle acquires a phase factor when it circulates a magnetic
flux confined in an infinite solenoid. This phase does not depend on the details of the
traversed path, but only on the number of times the particle circulates the solenoid. A
similar topological effect is also present in the statistical evolutions of particles. We shall
see below that the analogy between anyons and the Aharonov-Bohm effect can be made
rigorous. Still, realising anyons with actual magnetic fluxes and electric charges is not
very appealing as it requires building complex mechanical structures. It is intriguing that
effective fluxes and charges can arise in highly correlated systems. The best way to describe
the interaction between these effective fluxes and charges is through geometric phases, also
known as Berry phases [24]. These phases provide the natural mechanism that gives rise
to the anyonic statistics in many-body quantum systems.

Classical mechanics, including electrodynamics, can be cast purely in terms of real num-
bers. Quantum mechanics intrinsically incorporates complex numbers. The Schrödinger
equation

i~
∂ψ

∂t
= Hψ, (2.1)

has an imaginary number in front of the time derivative. Hence, its solutions ψ are in
general complex [25]. However, determining physical quantities concerned with the full
system requires only absolute values. In this case the knowledge of any phase factors of
ψ is obsolete. Complex phases become important when considering the evolution of parts
of the system. This is the case in interference experiments between different parts, which
can determine their relative phases. Such examples include the double slit experiment [26],
the Aharonov-Bohm effect [20] and Berry phases [24]. Moreover, quantum phases are in
the heart of some of the most surprising effects of quantum physics, like the adiabatic
approximation [28] and Anderson localisation [29].

In this Chapter we investigate the emergence of quantum phases within the context of
gauge fields and of geometric evolutions. This shall help us to approach the physics of
anyons intuitively. We shall study the geometric phases in some detail as many of their
properties carry forward to the case of braiding evolutions of anyons. Finally, we shall
introduce the main mechanism behind the integer quantum Hall effect which relates to the
physics of both the gauge fields and of the geometric phases.
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2.1 Quantum phases from gauge fields

When a charged particle is moving in the presence of a gauge field its wave function can
acquire a quantum phase. The Aharonov-Bohm effect [20] describes such a phase shift
when the particle circulates a magnetic flux tube inaccessible by the particle.

2.1.1 Charged particle in a magnetic field

A magnetic field can be described by a vector potential A = (Ax, Ay, Az) via

B = ∇ × A. (2.2)

Any gradient of a scalar function, ω, can be added to A without changing the value of the
magnetic field,

B = ∇ × (A + ∇ω) = ∇ × A, (2.3)

as ∇ × ∇ω = 0 identically. The invariance of the magnetic field under different choices of
ω is called gauge invariance and A is also known as a gauge field. Consider now a particle
of charge q at position r = (x, y, z) moving along a looping trajectory in the presence of a
magnetic field, as shown in Figure 2.1(a). The non-relativistic Hamiltonian of this system
is given by the minimal coupling prescription

HA = −
~2

2m

(
∇ − i

q
c~

A
)2
. (2.4)

It is possible to check that if ψ(r) is an eigenstate of this Hamiltonian with A = 0 then the
eigenstate with the same energy for a general vector potential A , 0 is given by

ψA(r) = exp
(
i

q
c~

∫ r

r0

A(r′) · dr′
)
ψ(r), (2.5)

where r0 is an arbitrary reference point and the integral is along a path connecting r0 and r.
The eigenstate ψA(r) shows explicitly the relation between phase factors and gauge fields.
Assume that the particle is adiabatically moved [21] in a looping trajectory C and we
ignore any other effect apart from the interaction between the charge, q, of the particle and
the magnetic field, B. Then the wave function at the end of the cyclic evolution acquires
the phase

ϕ =
q
c~

∮
C

A · dr. (2.6)
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(a) A charged particle traverses a loop C in the presence of a magnetic field B. The wave
function of the particle acquires a phase factor that is proportional to the flux passing through a
surface enclosed by the loop. (b) When the magnetic field B is confined inside an impenetrable
solenoid, having zero value outside it, the phase factor depends only on the number of times the
particle circulates the solenoid. The vector potential A along the path is also depicted.

By employing Stokes’s theorem this phase can be written as

ϕ =
q
c~

∫∫
S (C)
∇ × A · ds =

q
c~

∫∫
S (C)

B · ds =
q
c~

Φ. (2.7)

Here dr is an elementary segment of the loop C, S (C) is a surface enclosed by C and ds is
the surface element, while Φ is the flux of the magnetic field that goes through S (C). This
phase is gauge invariant, i.e. it does not depend on the choice of A provided that it gives
the same magnetic field B. Moreover, the wave function does not change if we add a unit
flux Φ0 = hc/q to the system that gives ϕ = 2π. It is apparent that the phase ϕ acquired
by the wave function due to the looping trajectory exclusively depends on the geometry
of the loop C. Nevertheless, it is invariant under deformations of the area S that keep the
corresponding flux Φ fixed.

2.1.2 The Aharonov-Bohm effect

To describe the Aharonov-Bohm effect let us consider the setting where magnetic flux is
confined in an infinite impenetrable tube. This flux can be produced, e.g. from a series
of magnetic dipoles aligned along the solenoid. We take a charged particle to move on
a plane perpendicular to the tube, as shown in Figure 2.1(b). As we shall see below the
charged particle can acquire a phase factor, even if it is moving in an area free from any
electromagnetic field. This phase is given by the line integral of the vector potential, A,
which is non-trivial outside the solenoid.

In particular, we take a magnetic field that is confined inside an infinitesimally small
solenoid with finite flux Φ going through it. If we position the solenoid at the origin of the
(x, y, z) coordinates the corresponding vector potential is given by

A(r) =

(
−

yΦ

2πr2 ,
xΦ

2πr2 , 0
)
, (2.8)

where r = |r|. This corresponds to the magnetic field

B(r) = ∇ × A(r) = ẑΦδ(r). (2.9)



16 Geometric and topological phasest
!"#$ !%#$

! 

"

! 

q

! 

1 ! 

"

! 

q

! 

2 ! 

"

! 

q

! 

CtFig. 2.2
(a) Anyons can be described effectively as composite particles with an attached magnetic flux,
Φ, and a ring with electric charge, q. When anyon 1 moves around anyon 2 along loop C its
charge circulates the flux of the other anyon and the Aharonov-Bohm effect gives rise to a
non-trivial statistical phase. (b) When the composite particle rotates around itself by 2π it again
acquires a phase factor as its charge circulates its flux, which can be attributed to a spin.

Hence the magnetic field is zero at r , 0, i.e. outside the solenoid, while it gives rise to a
non-zero flux Φ perpendicular to the plane. The vector potential (2.8) is parallel to the plane
with a non-trivial circulation

∮
C A · dr along a closed path C that goes around the solenoid,

as shown in Figure 2.1(b). As equation (2.5) still applies, we can expect to acquire a non-
trivial phase factor when the charge particle circulates the solenoid. Indeed, the phase factor
is given by (2.7), where now Φ is the flux confined in the solenoid. Importantly, this is a
topological effect as the phase is completely independent of the detailed shape of the path.
It is only proportional to the number of times the particle circulates the solenoid. Although
the particle does not interact directly with the magnetic field, its wave function responds
to the presence of a non-zero vector potential. The latter mediates the information of the
magnetic flux over arbitrarily long distances, thus giving rise to a non-trivial phase factor.
This unexpected shift of the wave function, which became known as the Aharonov-Bohm
effect, was experimentally detected in [22].

2.1.3 Anyons and Aharonov-Bohm effect

By drawing the analogy to the Aharonov-Bohm effect, we can obtain a somewhat me-
chanical picture of anyonic behaviour. Consider two composite particles equipped with a
charge, q, and a magnetic dipole that gives rise to the flux, Φ, as shown in Figure 2.2(a).
For simplicity we set in the following c = 1 and ~ = 1. Circulating anyon 1 around anyon
2, the charge of 1 goes around the flux of 2, thereby giving rise to the Aharonov-Bohm
effect with phase factor eiqΦ. Similarly, the magnetic dipole that gives the flux of 1 goes
around the charge of 2. It equivalently gives the same phase factor eiqΦ. Hence the total
contribution to the wave function of the two particles is e2iqΦ. This phase does not depend
on the details of the path such as its shape or the rate it is spanned as long as the adiabaticity
condition is satisfied. It depends only on the number of times one particle circulates around
the other. So it is topological in nature and it can faithfully describe the mutual statistics
of the particles. The statistical angle of these anyonic particles, which corresponds to the
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phase shift of their wave function when they are exchanged is thus given by

ϕ = qΦ. (2.10)

This description also encodes the spin characteristic of anyons. A 2π rotation of an anyon
around itself, as shown in Figure 2.2(b), gives rise to the phase eiqΦ due to the charged ring
circulating the confined flux. In the anyonic particle picture the counterclockwise circula-
tion corresponds to the phase factor ei2πs, where s is the effective spin of the anyon. Thus,
a non-trivial spin

s =
qΦ

2π
, (2.11)

is obtained whenever the charge, q, or the flux, Φ, are fractionalised. The values of the
exchange statistics and the spin phase factors emerging from this mechanical picture of
anyons are consistent with the spin-statistics theorem [7] that will be discussed in detail in
Section 4.1.6.

As an extension we can envision the Aharonov-Bohm effect in terms of non-Abelian
charges and fluxes. Non-Abelian charges can be described by vectors that span an n-
dimensional Hilbert space. The vector components are also known as colour. Fluxes are
then n-dimensional matrices that comprise a non-Abelian algebra. A circulation of a colour
charge around a non-Abelian flux generates an n-dimensional unitary matrix U instead
of merely a phase factor. Non-Abelian anyons can in general be decomposed into colour
charges attached to localised non-Abelian fluxes. The circulation of one non-Abelian anyon
around another can hence lead to a statistical evolution that non-trivially rotates the colour
state space. Such a description is given in Chapter 7.

Needless to say that non-Abelian gauge fields do not exist freely in nature. The corre-
sponding charges and fluxes are encountered in the physics of quarks, which is known in
high energy physics as quantum chromodynamics. Their control is beyond our engineering
capabilities. Nevertheless, they can emerge in carefully designed many-body systems. In
general, the behaviour of actual topological systems can effectively be described by inter-
acting charges and fluxes [23]. Next we present how such gauge fields can emerge in the
context of geometric phases.

2.2 Geometric phases and holonomies

The Aharonov-Bohm effect gives a consistent picture for the exotic statistical behaviour of
Abelian anyons. Here we describe how Abelian and non-Abelian gauge fields can emerge
in highly correlated quantum systems through the mechanism of geometric phases. Our
understanding of geometric phases advanced significantly when Michael Berry presented
an illuminating discussion in 1984 [24]. In his seminal paper he showed that there are
physical cases where the emerging non-dynamic phase factors cannot be eliminated by a
gauge transformation. Hence, we are forced to assign a physical meaning to them.
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A spin-1/2 particle is placed at a fixed position in the presence of a magnetic field B(θ, φ) that
can take any arbitrary orientation. The spin of the particle adiabatically follows the orientation of
the field.

2.2.1 Spin-1/2 particle in a magnetic field

The system

The emergence of effective gauge fields is best formulated in terms of the Abelian geo-
metric or Berry phase [24, 27]. Let us first present a simple example where a Berry phase
appears that involves a static spin-1/2 particle in the presence of a magnetic field. Consider
a magnetic field B(θ, φ) having orientation θ and φ, with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as
shown in Figure 2.3, and constant non-zero magnitude B. A spin-1/2 particle is placed at
the origin with spin orientation parallel to the field. Note that this situation is different to a
charged particle in a magnetic field described above. Here, the magnetic field is introduced
exclusively to control the orientation of the spin.

The Hamiltonian that describes the interaction between the magnetic field and the spin
is given by

H = −σ · B(θ, φ) = −σ · n̂(θ, φ)B, (2.12)

where n̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) gives the orientation of the magnetic field and
σ = (σx, σy, σz) are the Pauli matrices. An alternative way to write the Hamiltonian is

H = −U(θ, φ)σzU†(θ, φ)B = U(θ, φ)H0U
†(θ, φ), (2.13)

where H0 = −Bσz and

U(θ, φ) =

(
cos θ

2 e−iφ sin θ
2

eiφ sin θ
2 − cos θ

2

)
, (2.14)

is an SU(2) unitary rotation. The eigenstates of this system for any arbitrary orientation of
the magnetic field are given by | ↑ (θ, φ)〉 = U(θ, φ) | ↑〉 and | ↓ (θ, φ)〉 = U(θ, φ) | ↓〉, with
eigenvalues E↑ = B and E↓ = −B respectively, where σz | ↑〉 = | ↑〉 and σz | ↓〉 = − | ↓〉.
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The geometric evolution

Consider the system being prepared initially in eigenstate | ↑ (θ0, φ0)〉. When the orientation
of the magnetic field changes slowly the system adapts to the instantaneous eigenstate
| ↑ (θ, φ)〉. This is guaranteed by adiabaticity that applies as long as the change in orientation
of the magnetic field is slow compared to the characteristic energy scales of the system
[28]. When the magnetic field comes back to its initial orientation (θ0, φ0) the Hamiltonian
is again exactly the same as the initial one. So the state of the system is, up to an overall
phase factor, equal to the initial state. The Schrödinger equation dictates that this phase
factor is given by

eiϕ = e
∮

C A·dreiE↑T , (2.15)

with

Aµ = 〈↑ |U†(θ, φ)
∂

∂λµ
U(θ, φ) | ↑〉 . (2.16)

The derivation of (2.15) and (2.16) is presented in the next subsection. The vector A is
called Berry connection, or just connection, and it plays a similar role to the vector poten-
tial. Here λµ = {θ, φ}, C is a cyclic path in this parametric space and T is the total time
of the evolution. The first factor of the above phase, ϕg = 1

i

∮
C A · dr, is geometrical, in

the sense that it depends only on the path spanned in the parametric space {θ, φ}. Hence, it
is called geometric phase. Moreover, it is independent of the Hamiltonian H0. The second
term depends on the eigenvalue E↑ of the | ↑ (θ, φ)〉 state and the total time of the evolution.
We can remove it by subtracting an overall constant term from the Hamiltonian so that
E↑ = 0.

Taking this into account, we now explicitly evaluate the geometric phase resulting from
the spin-1/2 particle in the magnetic field B(θ, φ). From (2.16) and (2.14) we have that the
components of the connection A are given by

Aθ = 〈↑ |U†(θ, φ)
∂

∂θ
U(θ, φ) | ↑〉 = 〈↑ |

(
0 e−iφ

eiφ 0

)
| ↑〉 = 0 (2.17)

and

Aφ = 〈↑ |U†(θ, φ)
∂

∂φ
U(θ, φ) | ↑〉 =

i
2
〈↑ |

(
1 − cos θ − sin θe−iφ

− sin θeiφ −1 + cos θ

)
| ↑〉

=
i
2

(1 − cos θ). (2.18)

The connection components corresponding to | ↓〉 can be evaluated analogously. They give
the same values, but with an overall minus sign. The field strength, or curvature, corre-
sponding to the connection A is therefore given by

Fθφ = ∂θAφ − ∂φAθ =
i
2

sin θ, (2.19)

with all other components being zero. Applying Stokes’s theorem, as we did in (2.7), we
obtain

ϕg =
1
i

∮
C

A · dr =
1
i

∫ ∫
S (C)

F · ds =
1
2

∫ ∫
S (C)

dθdφ sin θ =
1
2

Ω(C), (2.20)
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In the case of spin-1/2 particle in a magnetic field B the loop C is spanned in the space of
orientations {θ, φ} of B. If the radius of the sphere parameterises the amplitude of the magnetic
field then the point where the two spin states become degenerate is at the centre of the sphere
where B = 0. The geometric phase is proportional to the solid angle, Ω, the loop C spans with
respect to this point.

where C is the spanned loop in the parametric space {θ, φ}, S (C) is the enclosed surface
and Ω(C) is the solid angle of the loop spanned on the unit sphere by the vector n̂(θ, φ), as
shown in Figure 2.4.

Properties of Berry’s phase

The connection A and the quantum state |ψ〉 can be subject to gauge transformations of the
form

A(θ, φ)→ A(θ, φ) − ∇ω(θ, φ),

|ψ(θ, φ)〉 → eiω(θ,φ) |ψ(θ, φ)〉 , (2.21)

where ω(θ, φ) is a scalar function. Nevertheless, Berry’s phase, ϕg, is gauge invariant. This
follows from the application of Stokes’s theorem (2.20) that relates it to the flux of the
gauge invariant field strength, F. The latter can take zero or non-zero values depending on
whether A is a pure gauge or not.

The natural question arises: when can a system support non-vanishing F? To answer
it we need to consider the geometry of the space of states |ψ〉 parameterised by λ. From
(2.20) we see that the geometric phase is proportional to a solid angle Ω. This solid angle is
spanned by the loop C in the parametric space with respect to the singular point where the
two states of the system become degenerate. For the case of a spin-1/2 particle consider the
amplitude B of the magnetic field as one of the possible parameters, depicted as the radius
of the sphere in Figure 2.4. Then B = 0, which corresponds to the centre of the sphere,
makes | ↑ (θ, φ)〉 and | ↓ (θ, φ)〉 degenerate. Such singular points in the parametric space are
necessary in order to create non-trivial curvature in the Hilbert space.

The process that gives rise to the geometric phase is equivalent, but not identical, to the
mechanism that generates the phase of a charged particle when it is moving cyclically in
the presence of a magnetic field. Similarly to a magnetic field, the geometric phase does
not depend on the shape of the path as long as it circulates the same effective flux, as long
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as it is independent of the speed at which the path is traversed and as long as the adiabatic-
ity condition is satisfied. The only difference is that here the cyclic evolution that gives
rise to the geometric phase is not parameterised by the coordinates of the particle, but by
some abstract parameters λµ = {θ, φ}. Nevertheless, it is possible to create complex enough
Hamiltonians so that this parametric space is formed by the quasiparticle’s coordinates.
We shall consider such many-body Hamiltonians in later chapters. Now we want to see
that the mechanism of geometric evolutions can give rise to more complex geometrical
effects, such as non-Abelian phases.

2.2.2 Non-Abelian geometric phases

In this subsection we give the generalisation of Berry’s phase (2.15) to the non-Abelian
case. We also present how these phases can arise from the evolution operator corresponding
to an adiabatic cyclic process.

The holonomy

To generalise geometric phases to the non-Abelian case we employ again unitary isospec-
tral evolutions as we did in the spin-1/2 case. Consider a parametric spaceM = {λµ, µ =

1, ..., d} and the D-dimensional Hamiltonian

H(λ(t)) = U(λ(t))H0U(λ(t))†, (2.22)

whereU(λ) ∈ SU(D) is a unitary rotation that changes in time. The λ’s are classical param-
eters that can be controlled externally. We then assume that the ground state of H0 consists
of an n-dimensional degenerate subspace, H0 = {|ψα〉 , α = 1, ..., n}, with energy E0 = 0
and an energy gap ∆E separating this subspace from the excited states.

To proceed we initiate the system in a certain state ofH0. If one changes the parameters
λ slowly in time compared to the energy gap ∆E then the evolution is adiabatic. As above
this implies that there is no transfer of population into the excited states. However, the
transfer of population between the degenerate states of H0 is not excluded. Indeed, the
spanning of a loop C in the parametric spaceM results in an evolution that is an element
of the n-dimensional unitary group U(n). This evolution acts on the ground state-space of
the system in the following way

|Ψ(C)〉 = ΓA(C) |Ψ(0)〉 , (2.23)

where |ψ(0)〉 and |ψ(C)〉 both belong to H0. The non-Abelian geometric phase ΓA(C),
which is also known as a holonomy, is given by
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ΓA(C) = P exp

∮
C

A · dλ, (2.24)

where P denotes path ordering. Here, and in the case of the geometric phase (2.15), the
connection A is an anti-Hermitian operator as, for convenience, we absorbed in A an i
factor. The matrix elements of its components are given by

(Aµ)αβ = 〈ψα | U(λ)†
∂U(λ)
∂λµ

|ψβ〉. (2.25)

This is the non-Abelian generalisation of the usual Berry phase [24], which was first dis-
covered by Wilczek and Zee [30].

Derivation of holonomy

We now present a derivation of (2.23), (2.24) and (2.25) that also provides a physical
insight into the mechanism behind geometric evolutions. Consider the isospectral adiabatic
evolution given in (2.22). Then the time evolution operator takes the form

U(0,T ) = T exp
(
−i

∫ T

0
U(λ) H0U

†(λ)dt
)
. (2.26)

Let us divide the time interval [0, T ] of the cyclic evolution into N equal segments ∆t and
defineUi = U(λ(ti)) for i = 1, ...,N. As ∆t gets small in the limit of large N we have

U(0,T ) = Tlim
N→∞

exp

−i
N∑

i=1

Ui H0U
†

i ∆t

 = T lim
N→∞

N∏
i=1

Ui exp (−iH0∆t)U†i . (2.27)

This means that the productU†iUi+1 of two successive unitaries gives rise to an infinitesi-
mal rotation of the form

U
†

iUi+1 ≈ 1 + Āi · ∆λi, (2.28)

where

(Āi)µ = U
†

i
∆Ui

∆(λi)µ
(2.29)

with µ = 1, . . . , d. Hence, the evolution operator U(0,T ) becomes

U(0,T ) = T lim
N→∞

UN

1 − iH0N∆t +

N−1∑
i=1

Āi · ∆λi

U†1 . (2.30)

The initial and the final transformations U1 and UN are identical for the case of closed
paths as they correspond to the same point of M. With a reparameterisation they can be
made equal to the identity transformation, i.e.U1 = UN = 1. We now consider the action
of U(0,T ) on an initial state |ψ(0)〉 that belongs to the ground state subspace, H0. If we
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demand adiabaticity, then at each time ti the state |ψ(ti)〉 will remain within H0(ti). As
this eigenspace is characterised by the eigenvalue E0 = 0 the action of H0 from (2.30) is
trivialised, thus obtaining

U(0,T ) = T lim
N→∞

1 +

N−1∑
i=1

Ai · ∆λi

 = P exp
∮

C
A · dλ. (2.31)

In (2.31) the connection is defined by

A(λ) = Π(λ)Ā(λ)Π(λ), (2.32)

where Π(λ) is the projector in the degenerate ground state subspace H0(t) imposed by the
adiabaticity condition. Hence, it is equivalent to (2.25). Notice that we replaced the time
ordering T with the path ordering P as the parameter of the integration at the last expression
is the position on the path C. This derivation makes it clear how the holonomy appears from
the evolution operator by imposing the adiabaticity condition in a cyclic evolution. For the
special case where the degenerate space is one-dimensional, dim(H0) = 1, we obtain the
Berry phase given in (2.15) and (2.16).

2.2.3 Properties of geometric evolutions

For completeness we now review some generic properties of holonomies [27]. For exam-
ple, as the geometric evolutions resemble interactions with gauge fields they inherit the
property of gauge invariance. Moreover, holonomies are parameterised by the loops C.
Hence the properties of the loops, such as their composition, are reflected in the proper-
ties of the holonomies. Finally, the structure of the parametric spaceM of the holonomies
determines the form of the connection A.

Gauge transformations

For a Hamiltonian subject to isospectral transformations

H(λ) = U(λ)H0U(λ)†, (2.33)

a local gauge transformation is a unitary transformation

U(λ)→Ug(λ) = U(λ)g(λ) (2.34)

with g(λ) ∈ U(n), which does not change the form of Hamiltonian H(λ). For non-trivial
transformations this can only happen if g(λ) is acting exclusively on the degenerate sub-
space H0. On this subspace the Hamiltonian acts trivially, i.e. it is proportional to the
identity. Hence, a gauge transformation g(λ) should satisfy

g−1(λ)H0g(λ) = H0 (2.35)

for all λ inM. In terms of the unitary operatorU(λ), the action of the gauge transformation
is to merely reparameterise the λ variables. Taking into account that gH0 = H0g and gΠ =



24 Geometric and topological phasest

! 

"0

!"#$

! 

"0

!%#$

! 

"0

! 

C(t)

! 

C1(t)

! 

C2(t)

! 

C0(t)
!&#$ !'#$

! 

"0

! 

C"1(t)
! 

" # 0

!(#$

! 

C(t)

tFig. 2.5
(a) The loop C(t) parameterised by t ∈ [0,T ] with base point λ0. (b) The base point λ0 of a loop
can be moved to λ′0 by employing a path that is transversed forwards and backwards at the
beginning and at the end of the loop, respectively. (c) The composite loop that spans C1 for
t ∈ [0,T/2] and C2 for t ∈ [T/2,T ]. (d) The trivial loop C0. (e) The inverse of a loop C is the same
geometrical path, but it is spanned in the opposite direction.

Πg, we are able to obtain the gauge transformation of the connection as

A→ Ag = g−1Ag + g−1dg. (2.36)

It follows that the holonomy transforms as

ΓA → ΓAg = g−1ΓAg. (2.37)

Notice that in the new coordinates the state vectors |ψ〉 become |ψg〉 = g−1|ψ〉. Thus, the
action of the holonomic evolution on a state has an intrinsic i.e., coordinate-free, meaning.

Loop parametrisation

Consider now the space Lλ0 of all loops, based at a given point λ0 of the parametric space
M, i.e. all loops C parameterised by t ∈ [0,T ] with C(0) = C(T ) = λ0, as shown in Figure
2.5(a). As long as the parametric space M is connected, the choice of λ0 does not play
any role, as it gives the same set of loops. Indeed, trivial loops, i.e. paths that are traversed
forwards and backwards, can be employed to move the base point λ0 to any position, as
shown in Figure 2.5(b).

In the Lλ0 space we introduce a composition rule for loops

(C2 ·C1)(t) = θ(
1
2
−

t
T

)C1(2t) + θ(
t
T
−

1
2

)C2(2t − T ), (2.38)

where θ(t) is the step function. In other words the composite loop runs successively through
both constituent loops, as shown in Figure 2.5(c). The unity loop element is identified with
a point, i.e. C0(t) = λ0 for all t ∈ [0,T ], as shown in Figure 2.5(d). This is equivalent to a
trivial loop where a path is spanned both forwards and backwards without enclosing any
area. As the inverse loop we denote C−1(t) = C(T − t), where t ∈ [0, T ], shown in Figure
2.5(e).

The basic properties of the holonomy ΓA(C) = P exp
∮

C A · dλ in terms of its loop
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dependence are the following. First, the composition of loops in L gives a holonomic
evolution that is the product of the evolutions associated with the individual loops

ΓA(C2 ·C1) = ΓA(C2) ΓA(C1). (2.39)

Second, staying at the same point at all times corresponds to the trivial holonomy

ΓA(C0) = 1. (2.40)

Third, traversing the path C in reverse order gives the inverse holonomy

ΓA(C−1) = Γ−1
A (C). (2.41)

Fourth, changing the functional dependence of the path in terms of t does not change the
value of the holonomy as long as the adiabaticity condition holds

ΓA(C ◦ f ) = ΓA(C), (2.42)

where f is any function of t. This means that the rate with which the path C is spanned
does not change the value of ΓA(C). Hence, the group properties of the holonomies follow
simply from the geometric properties of the spanned loops. This equivalence allows us to
efficiently represent holonomies by their corresponding loops.

Holonomies as unitary matrices

The path dependence of the holonomies demonstrates that the set of holonomies spanned
by all paths, i.e. Hol(A) = ΓA(L), is a subgroup of U(n). Such a subgroup is known as the
holonomy group of the connection A. When the holonomy group coincides with the whole
U(n) then the connection A is called irreducible. In order to determine if this is the case for
a given connection it is useful to consider the curvature, or effective magnetic field, F, of
the connection A with components

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν]. (2.43)

The relation between the curvature and the irreducibility of the connection is given by the
following statement [31]: all possible Fµν’s can be considered as the basis algebra elements
that generate the holonomic unitary group.

It follows in particular that when the Fµν’s span the whole u(n) algebra, then the con-
nection is irreducible. The possibility of spanning the whole group U(n) by a non-Abelian
geometric phase is related to quantum computational universality. Indeed, if holonomies
are employed to perform quantum computation then we need to know if spanning any ar-
bitrary sequence of paths in L is sufficient to generate any desired quantum algorithm.
Irreducibility of the connection provides a mathematical criterion to answer this question.

Finally, let us present some structural properties of the holonomies. The holonomy,
ΓA(L), is exclusively acting on the degenerate states that are actually evolved by the adi-
abatic process. This is apparent from (2.25) which projects U†∂U/∂λµ on the degenerate
subspace. If during the spanning of the whole path, certain states are not involved in the
evolution then the resulting holonomy ΓA(L) will act trivially on them. In other words, if



26 Geometric and topological phasest
U acts as an identity on a certain state of the degenerate subspace, then the holonomy will
also act trivially on it.

Furthermore, the holonomy operator arises from the non-commutativity of the control
transformations which produce effectively a curvature. Consider as an example the case of
the geometric phase produced in front of the spin states of an electron in the presence of a
rotated magnetic field. The non-commutativity here is between the different U(2) control
unitaries given by (2.14). These unitary matrices change the orientation of the magnetic
field parameterised by θ and φ, as shown in Figure 2.3. This characteristic also holds in the
non-Abelian generalisation of the geometric phase.

Finally, note that in the absence of adiabaticity the connection A is not projected to any
subspace of states of the Hamiltonian. Thus it is a pure gauge that gives a trivial holonomy.
Only when it is non-trivially projected in a certain subspace of states it gives rise to a
non-trivial geometric phase.

2.2.4 Anyons and geometric phases

The description of anyons in terms of the Aharonov-Bohm effect has conceptual value, but
it can offer little to the physical realisations of anyons. On the other hand, geometric phases
provide an efficient mechanism for anyonic statistics that can be met in physically plausible
topological systems. We now present the main characteristics of topological systems that
allow their description in terms of geometric phases. These characteristics are illustrated
later with concrete examples.

As we have seen topological systems are two-dimensional many-body systems with ex-
tended wave functions and localised quasiparticle excitations. To describe statistical evolu-
tions in terms of geometric phases we need to identify the control parameter spaceM with
the coordinates of the quasiparticle, xµ. Moreover, the effective magnetic field, F, arising
from the geometric connection A, should be tightly confined at the position of the quasipar-
ticles. Finally, the generation of a phase factor due to the flux of F implies a charge degree
of freedom. Consider now braiding evolutions between quasiparticles. These evolutions
correspond to loops in the coordinate parametric spaceM. Hence, their statistical evolu-
tion can be described by a geometric phase. The generated phases are independent of the
shape of the path due to the confinement of the effective flux at the quasiparticle position.
Their description can be therefore given by Figure 2.2(a), where the field F gives rise to the
flux Φ. This approach facilitates the description of anyons in terms of the Aharonov-Bohm
effect through the language of geometric phases.

But how can we engineer a system that exhibits a geometric phase with confined effec-
tive flux? In the above example of a spin-1/2 particle in the magnetic field, the connection
A given in (2.18) has a sinusoidal dependence on the control parameters {θ, φ}. This is a
rather general property. A finite system is isospectrally transformed by unitary matrices that
are parameterised by periodic, e.g. trigonometric functions. This results from the compact-
ness of the parametric spaceM and the finite dimensionality of the Hilbert space. Hence,
the resulting effective magnetic field F has a similar functional dependence. To acquire a
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strictly confined effective field we need an infinite or non-compact parametric space. In-
tuitively, this requires an infinitely large Hilbert space, e.g. a system that comprises of an
infinite number of constituent particles. To be able to go beyond the sinusoidal dependence
the isospectral unitary rotations need to act non-trivially onto infinitely many states of the
system resulting, in general, in highly correlated states. In practice, very large but finite
systems are expected to exhibit exponentially confined effective flux.

Beyond the paradigm presented here there exist topological systems with statistical evo-
lutions that do not require the adiabatic condition. In the following chapters we see any-
onic systems, where the parametric space is discrete and the adiabatic condition does not,
strictly speaking, apply. Moreover, we also present examples, where the statistical evo-
lution can be calculated via geometric phases. The first explicit description of anyonic
statistics in terms of geometric phases was given by Arovas, Schrieffer & Wilczek [32].
They showed how the statistics of Abelian anyons, appearing in the fractional quantum
Hall effect, can be expressed in terms of a Berry phase. How to derive the non-Abelian
statistics from geometric phases is an active topic of research [33, 34, 35, 36, 37].

2.3 Example I: Integer quantum Hall effect

We now present the quantum mechanical description of a charged particle confined to a
plane in the presence of a magnetic field. This simple system has a surprisingly rich be-
haviour [38]. What emerges is a new phenomenon known as the integer quantum Hall
effect. In 1985, Klaus von Klitzing was awarded the Nobel prize for its experimental dis-
covery [39]. He noticed that the Hall conductivity has a step-like behaviour, with distinct
plateaus, as a function of the inverse magnetic field strength [40]. This is unlike the linear
behaviour that one expects to find classically. A unique insight into the physics of the inte-
ger quantum Hall effect is given in terms of geometric phases through Laughlin’s thought
experiment [41].

2.3.1 Wave function of a charged particle in a magnetic field

Consider a spinless electron with charge e and mass me confined in a thin film. The film
has dimensions L1, L2 and L3 and is positioned on the x-y plane, as shown in Figure 2.6.
Suppose that the electrons are in a coherent quantum state throughout the sample and a
constant magnetic field along the z direction B = (0, 0, B) is applied. In the Landau gauge
the vector potential is then given by A = (0, Bx, 0) and the Schrödinger equation (2.4)
becomes

−
~2

2me

 ∂2

∂x2 +

(
∂

∂y
+ i

eB
~

x
)2

+
∂2

∂z2

 Ψ = EΨ. (2.44)
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The magnetic field B is aligned along the z direction, while the electron is restricted to move in a
thin film with dimensions L1, L2 and L3 that lies on the x-y plane.

If the electron is subject to periodic boundary conditions along the y and z directions it
is convenient to write the wave function in the form Ψ(x, y, z) = Φ(x)eikyyeikzz with ky =

p2π/L2, kz = q2π/L3, where p and q are integers. Then the Schrödinger equation (2.44)
reduces to

−
~2

2me

∂2Φ(x)
∂x2 +

~2

2me

(
ky +

eB
~

x
)2

Φ(x) = E′Φ(x), (2.45)

where E′ = E − ~2k2
z /(2me). This is equivalent to the Schrödinger equation of a one-

dimensional harmonic oscillator with its origin shifted in position by

x0 = −
~ky

eB
(2.46)

and an effective spring constant given by γeff = e2B2/me. Its frequency ω =
√
γeff/me is

precisely the cyclotron frequency of the classical circular orbit of an electron in a constant
magnetic field, ω = eB/me (see Exercise 2.2). The solution of the initial Schrödinger
equation is hence given by

Ψ(x, y, z) = ΨHO
n (x − x0)

√
1
L2

eikyy

√
1
L3

eikzz, (2.47)

where ΨHO
n (x− x0) is the nth eigenstate of the harmonic oscillator and the energy levels are

given by

E = (n +
1
2

)~ω +
~2

2me
k2

z , (2.48)

with n = 0, 1, 2, .... The states that correspond to different values of n are called Landau
levels [48]. For each n, these states are parameterised by the discrete values of ky and kz.

We now impose a box boundary condition along the x direction given by −L1/2 < x <
L1/2. This restricts the possible values of the parameter x0. Since ΨHO

n (x − x0) is extended
throughout space it can not, strictly speaking, satisfy the box boundary conditions. How-
ever, for small n it is well localised and we can make the crude approximation of ignoring
the effect of this mismatch. More concretely, we assume that the boundary condition just
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The energy structure of a particle confined in a thin film in the presence of a perpendicular
magnetic field. There is a large degeneracy at each energy level, called a Landau level,
parameterised by the discrete ky. The states are depicted by lines, rather than points, for
illustration purposes.

restricts the possible values of x0 such that

|x0| <
L1

2
. (2.49)

From (2.46) we see that the values of ky are related to x0. So they will be also restricted by

|ky| <
eBL1

2~
. (2.50)

As shown in Figure 2.7 the spacing between the values of ky is 2π/L2 due to the finite size of
the sample. So there is a finite number, Nky , of possible states with different values of ky that
can be accommodated along the x direction. Note that all of these states have exactly the
same energy as E is independent of ky. Indeed, the number of possible ky values associated
with each Landau level is

Nky = 2
eB
~

L1

2
1

2π
L2

=
L1L2

2π
~

eB

=
Area of sample

2πl2B
, (2.51)

where

lB =

√
~

eB
(2.52)

is the magnetic length. The energy spacing between Landau levels is

∆E = ~ω =
eB~
me

=
~2

mel2B
. (2.53)

Hence, an electron confined to move in two dimensions and in the presence of a perpendic-
ular magnetic field has discrete energy levels and a large degeneracy at each one of them,
as illustrated in Figure 2.7.
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The experimental configuration that gives rise to the quantum Hall effect. A magnetic field is
applied perpendicularly to the two-dimensional sample, in which electrons are free to move. A
potential difference along the y direction is created by an electric field and electrons are free to
enter and exit the sample. The currents along the x direction, jx, and the y direction, jy, are
measured by voltmeters.

2.3.2 Current behaviour and Hall conductivity

We now describe the integer quantum Hall effect [39] based on the previous solution of
the Schrödinger equation and some rather classical analysis. Consider the configuration
of Figure 2.8 where a metallic sample is placed on the x-y plane with a magnetic field,
B = (0, 0, B), along the z direction and an electric field E = (0, Ey, 0) giving rise to a
potential difference along the y direction. The sample provides a two-dimensional electron
gas that is kept at low temperature. The conductivity dictates that the produced current
density due to the electric field is given by j = σ0E. As the electric field is only along the
y direction we have the non-zero current component

jy = σ0Ey. (2.54)

Here the conductivity constant is given by

σ0 =
nee2τ0

m∗e
, (2.55)

where ne is the electron density, τ0 corresponds to an average time between collisions of
the electron with imperfections in the sample and m∗e is the effective mass of the electron in
the material [42]. In the presence of the magnetic field the electrons experience a Lorentz
force

FL = −ev × B. (2.56)

As j = −enev the extra force due to the magnetic field can be written as FL = j × B/ne.
Alternatively, one can view the Lorentz force as produced by an equivalent electric field
E′ = −FL/e. Including the effect of the magnetic field we obtain the following current
density

j = σ0

(
E −

j × B
nee

)
. (2.57)
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An illustration of the measured Hall conductivity σxy (solid line) in units of e2/h as a function of
1/B. Plateaus emerge that correspond to the integer values of f = σxyh/e2. Classically, a linear
behaviour is expected (dotted line), so the plateaus are a purely quantum mechanical effect.

Finally, the density of electrons can be given in terms of the maximum number of electrons
per unit volume that can be accommodated in the Landau levels. From (2.51) we have

ne = f
Nky

L1L2
= f

eB
h
, (2.58)

where f is a proportionality constant to be determined. Substituting back the components
of the current we finally obtain

σyy =
jy
Ey

=
σ0

1 + (eτ0B/m∗e)2 , σxy =
jx

Ey
= f

e2

h

(
1 −

1
1 + (eτ0B/m∗e)2

)
, (2.59)

where we defined as σyy the longitudinal and as σxy the transverse conductivity. In the
absence of B we recover σyy = σ0 and σxy = 0 as in (2.54). This shows that the magnetic
field changes the direction of the current. It was found experimentally by von Klitzing,
Dorda & Pepper [39] that for varying B the parameter f takes only integer values and the
conductivities become

σyy = 0, σxy = f
e2

h
. (2.60)

This deviates from the classically expected behaviour of the Hall conductivity, which is
given by (2.59), and is illustrated in Figure 2.9. Below we explain why the conductivity
σyy becomes zero. In the next Subsection we present Laughlin’s thought experiment that
explains why σxy takes quantised values.

The unexpected behaviour of the conductivities σyy and σxy can be interpreted in the
following simplified way. Consider a metallic sample, with the quantum structure of the
Landau levels and the large degeneracy given by (2.51). We assume that the sample has
many electrons and the system is prepared into its ground state and kept at very low tem-
perature. As the electrons are fermions, each one can occupy only one quantum state, thus
filling up one by one the Landau levels, as shown in Figure 2.10. When an electron is mov-
ing in the sample it has an average time between collisions with impurities of the lattice
given by τ0. Such a collision causes the electron to scatter elastically. During this process
the electron changes its quantum state. When a certain number of Landau levels are already
completely filled an electron cannot undergo such a scattering with an impurity, as all states
with the same energy are completely filled. Moving an electron to an empty Landau level
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Completely filled Landau levels up to a certain energy, where electrons are denoted by black
dots. Elastic collisions of the electrons with impurities cannot cause the electrons to move to
another filled state within the same Landau level due to Pauli’s exclusion principle. Transitions to
higher Landau levels are energetically forbidden due to low temperature.

with higher energy would acquire extra energy that needs to be obtained from outside the
system in the form of thermal fluctuations. When we keep the temperature of the sample
very low, such a process is prohibited. Thus, the electron is not allowed to collide with
impurities. Thus, effectively the time between collisions becomes infinite, τ0 → ∞. Sub-
stituting this into (2.59) we precisely obtain (2.60), which is the desired result.

Equation (2.60) suggests how to measure the ratio e2/h experimentally. It has been
shown that the integer quantum Hall effect provides the means to measure this ratio with
the impressive accuracy of one part in 107. This has applications to metrology for the
calibration of resistance in units of e2/h. Moreover, it determines independently the fine
structure constant α = e2/(2hcε0) of quantum electrodynamics [43].

2.3.3 Laughlin’s thought experiment and geometric phases

To theoretically understand the quantal nature of the conductivity σxy we resort to Laugh-
lin’s thought experiment [41]. This experiment gives a new perspective onto the quantum
Hall effect by connecting it to geometric phases. The possibility of explaining the quanti-
sation of σxy with general principles is based on the following observation. In the previous
analysis of the quantum Hall system we argued that impurities play a central role in the
emergence of conductivity plateaus. But impurities appear in a random way throughout
the sample. So we cannot expect a microscopic analysis of the sample to explain why all
possible values of the conductivity σxy are quantised. This suggests that there should be a
macroscopic principle governing the behaviour of the system.

Let us return to the initial configuration of the quantum Hall system. We shall be inter-
ested in samples with cylindrical configurations, as the one shown in Figure 2.11. Assume
that we can continuously change the boundary conditions of the sample from rectangular,
given in 2.12(a), to cylindrical, given in Figure 2.12(b) or (c). If the system is large enough
and the energy gap above the ground state remains finite at all times, then the generic
properties of the system, such as its conductivity, are not expected to change when we con-
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Configuration of Laughlin’s thought experiment. Increasing the flux Φ by a single flux quantum,
Φ0, brings the looping sample back to its original quantum state, up to a geometric phase. This
phase has a topological behaviour that explains why the quantum Hall conductivity takes
discrete values. During the flux increase, charge is transported between the reservoirs RA and
RB due to the quantum Hall effect.

tinuously change the boundary conditions [47]. Consider a magnetic flux Φ that is not in
contact with the rectangular sample. A change in this flux corresponds to a gauge trans-
formation as the magnetic field never comes in contact with the sample. Consider now the
cylindrical configuration with the flux Φ threading the cylinder, as shown in Figure 2.11.
A change now in the flux Φ induces a current along the ribbon due to Faraday’s law. Still,
when the value of the flux is increased by integer multiples of the unit flux

Φ0 =
hc
e
, (2.61)

then it corresponds to a gauge transformation, as deduced from the discussion below equa-
tion (2.7).

Due to Faraday’s law (see Exercise 2.3) the change in the magnetic flux Φ induces an
electric field along the ribbon. Together with the magnetic field B, which is perpendicular
to the sample, they give rise to the quantum Hall effect. So while the flux is changing we
expect a current to emerge between the reservoirs RA and RB of Figure 2.11. An increase
by a unit flux Φ0 gives rise to the transfer of charge

Q = σxy
h
e
. (2.62)

Here we defined the Hall conductivity to be given by σxy = f e2/h, with f being an un-
known parameter. Classically, f is an integer as at each cycle the charge comes in units
of the electronic charge, e. Translated to the quantum world this argument implies that
the conductivity is related to the average transported charge that need not be an integer
multiplet of e. This would be the case if different flux cycles could lead to different inte-
ger charge transfers resulting in a non-integral expectation value. We would like to show
that the conductivity and, as an extension, the average transferred charge comes indeed in
quantised steps.

To investigate the behaviour of the average conductivity we need to evaluate the expecta-
tion value of the current operator J. To do so we consider the adiabatic evolution where we
change the boundary condition of the system by deforming the rectangular sample, shown
in Figure 2.12(a), to a cylinder oriented along the x direction, as shown in Figure 2.12(b).
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(a) A two-dimensional sample of rectangular shape used for the quantum Hall effect. (a) We
slowly deform the rectangle to a cylindrical shape oriented along the x direction, while we
adiabatically turn on a flux Φx. (c) The rectangle can alternatively be deformed to a cylinder
along the y direction with a flux Φy threading through it.

We then introduce a threading flux Φx through the cylinder, before we bring the system
back to its original rectangular configuration. Then we deform the system to a cylinder
oriented along the y direction, as shown in Figure 2.12(c), introduce a flux Φy through it,
before we bring it again back to the rectangular configuration. The Hamiltonian of the sys-
tem is then parameterised by the values of both fluxes Φx and Φy that threaded the looped
sample along either direction, i.e. H = H(Φx,Φy). It is important to notice that this Hamil-
tonian is periodic in both Φx and Φy with period Φ0, as increasing the flux by Φ0 returns
the Hamiltonian of the system to its initial form up to a gauge transformation. The process
of physically implementing the change in flux induces the non-zero currents

Jx = c
∂H
∂Φx

and Jy = c
∂H
∂Φy

. (2.63)

Let us assume that the system is prepared initially at its ground state
∣∣∣ Ψ(Φx,Φy)

〉
whose

energy, E0, does not change when we vary Φx or Φy. Moreover, we demand that the ground
state of the system is separated from the excited states by a non-zero energy gap at all times.
Then adiabatic evolutions can be realised by varying the variables slowly with respect to
this gap. In particular, we consider the evolution where we first increase the value of Φx

by Φ0 and then the value of Φy by Φ0. These flux increases are accompanied by the corre-
sponding cylindrical deformations. Due to gauge invariance the final state of the electrons
should be equal to the initial one up to an overall geometric phase, i.e.∣∣∣ Ψ(Φx + Φ0,Φy + Φ0)

〉
= eiϕg

∣∣∣ Ψ(Φx,Φy)
〉
. (2.64)

To evaluate the geometric phase ϕg we employ the following methodology. The Schrödinger
equation for the evolution when only Φx is varied becomes

i~∂t |Ψ〉 = i~∂tΦx

∣∣∣ ∂Φx Ψ
〉

= H |Ψ〉 . (2.65)

This gives

i~
〈
∂ΦyΨ

∣∣∣ ∂tΦx

∣∣∣ ∂Φx Ψ
〉

=
〈
∂ΦyΨ

∣∣∣ H |Ψ〉 , (2.66)

where |Ψ〉 =
∣∣∣ Ψ(Φx,Φy)

〉
and ∂a = ∂/∂a. Taking the complex conjugate of (2.66) and

adding it to itself we obtain

−~∂tΦx2Im(〈∂ΦyΨ|∂Φx Ψ〉) =
〈
∂ΦyΨ

∣∣∣ H |Ψ〉 + 〈Ψ |H
∣∣∣ ∂ΦyΨ

〉
. (2.67)



35 2.3 Example I: Integer quantum Hall effectt
As H is a Hermitian operator, we have

∂Φy (〈Ψ |H |Ψ〉) =
〈
∂ΦyΨ

∣∣∣ H |Ψ〉 + 〈Ψ | ∂Φy H |Ψ〉 + 〈Ψ |H
∣∣∣ ∂ΦyΨ

〉
. (2.68)

We now use ∂Φy (〈Ψ |H |Ψ〉) = ∂Φy (E0〈Ψ|Ψ〉) = ∂Φy E0 = 0, which applies due to the
assumption that the ground state energy, E0, is independent on the flux Φy. Substituting
this into (2.67) and employing (2.63) we finally obtain

〈Ψ | Jy |Ψ〉 = c~∂tΦxK(Φx,Φy), (2.69)

where

K(Φx,Φy) = 2Im(〈∂ΦyΨ|∂Φx Ψ〉). (2.70)

Notice, that ∂tΦx/c is the electromotive force that we can relate through the Schrödinger
equation to the Hall current 〈Ψ | Jy |Ψ〉 with the proportionality factor ~c2K (see Exercise
2.3). This factor is the transverse Hall conductivity. Hence

σxy(Φx,Φy) = ~c2K(Φx,Φy). (2.71)

If we introduce the connection corresponding to the variations of the ground state with
respect to the parameter {Φx,Φy} given by

AΦx = 〈Ψ|∂Φx Ψ〉 and AΦy = 〈Ψ|∂ΦyΨ〉, (2.72)

then the non-zero component of the field strength is

FΦxΦy = ∂Φx AΦy − ∂Φy AΦx = 2iIm(〈∂Φx Ψ|∂ΦyΨ〉). (2.73)

Hence, the Hall conductivity can be expressed in terms of the curvature of the system’s
Hilbert space parameterised by the fluxes {Φx,Φy}, i.e.

K(Φx,Φy) = −iFΦxΦy . (2.74)

Equation (2.20) relates the geometric phase ϕg with the field strength F. Hence, the total
conductivity is proportional to the geometric phase resulting from the adiabatic evolution
of increasing both fluxes Φx and Φy by Φ0.

To evaluate the total transfer of charge we can calculate the total conductivity through an
adiabatic transport (see Exercise 2.3). For that we need to integrate the Φx and Φy variables
over their whole range Σ = [0,Φ0] × [0,Φ0]. Hence, the total conductivity is proportional
to

ν =
1

2π

∫ ∫
Σ

K(Φx,Φy)dΦxdΦy. (2.75)

Note that due to periodicity Σ corresponds to a torus. We now employ the Gauss-Bonnet
formula [45] that states

1
2π

∫ ∫
S
Kds = 2 − 2g, (2.76)

where S is a general compact surface with surface element ds, K is its local curvature and
g is the number of its handles, also known as the genus of the surface. As it happens [46]
this equation also holds if we use the Hilbert space curvature K(Φx,Φy) in the place of the
geometric curvatureK . In this case the right hand side of (2.76) is an integer, but it does not
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necessarily relate to the genus of a two-dimensional surface. Hence, the Hall conductivity
comes in quantised steps and the average charge (2.62) evaluated quantum mechanically is
also quantised. The integer ν is known as the Chern number [44].

Summary

In this Chapter we presented the Aharonov-Bohm effect that describes the quantum me-
chanical evolution of charged particles in the presence of magnetic fields. We also con-
sidered geometric phases that emerge when a quantum system evolves in a cyclic adia-
batic fashion. They are described in terms of effective magnetic fields that can actually be
Abelian or non-Abelian. Geometric phases are also known as Berry phases or holonomies.

We argued that the anyonic statistics of many topological systems can be determined in
terms of geometric phases. Such an approach has already proven fruitful for understanding
the nature of anyonic statistics as well as giving the means to carry out quantitative studies.
Explicit demonstration of the anyonic statistics is the ultimate criterion for proving the
topological character of a model. In Chapter 6 we employ geometric phases to evaluate the
non-Abelian statistics of such a concrete model.

We have seen that to support geometric phases with topological properties a system
needs to comprise of a large number of constituent particles. In this case the evolutions are
tolerant to erroneous deformations of the traversed path. This is a topological characteristic
in the behaviour of the evolution. The underlying redundancy in the encoding and this
resilience to deformation errors resembles quantum error correction. In the latter, quantum
information is encoded in a redundant way so that errors can be neutralised. The larger
the quantum system the more protected the information becomes. The analogy between
topological systems and quantum error correction is made explicit in Chapter 5.

Exercises

2.1 Consider a quantum system with three states in Λ-configuration subject to the Hamil-
tonian

H =


∆ Ω1 Ω2

Ω∗1 0 0
Ω∗2 0 0

 . (2.77)

Here Ω1 and Ω2 are complex numbers that correspond to the coupling between the
states and ∆ is a real energy shift. Evaluate all the possible holonomies that can be
produced by manipulating Ω1 and Ω2. [Hint: Determine first the degeneracy condi-
tions of the Hamiltonian].
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2.2 Consider an electron with charge e and mass me confined to move on the plane in

the presence of a perpendicular magnetic field B. Employ the Lorentz force (2.56) to
show that the classical motion of the electron is circular with frequency

ω =
eB
me
, (2.78)

which is known as the cyclotron frequency. Demonstrate the correspondence prin-
ciple between this classical description and the quantum one given in (2.47). [Hint:
For the last part compare the evolutions with large radius for the classical case with
the quantum states that give large mean radius.]

2.3 Consider the cylindrical sample given in Figure 2.11 with radius R. Employ Fara-
day’s law of induction ∮

E · dr = −
1
c
∂Φ

∂t
, (2.79)

to determine the value of the electric field along the ribbon generated by the change
in the magnetic flux. Due to the quantum Hall effect a current is expected to emerge
between the two reservoirs RA and RB with density

j(t) = σxyE(t). (2.80)

By integrating the current contributions along the whole ribbon show that the total
current that flows between the reservoirs is given by

J(t) =
σxy

c
∂Φ(t)
∂t

. (2.81)

Finally, show that the total transfer of charge, when the flux is increased by ∆Φ =

Φ0 = hc/e, is

Q = σxy
h
e
. (2.82)



3 Quantum computation

Computation is a process of performing a large number of simple operations. The main
building blocks of classical computers are bits. Each of them can take either the value 0
or 1. A series of gates can change these values by acting on them selectively. This process
is structured to fulfil a purpose. For example, if we are interested in adding two numbers,
the numbers are encoded into bits and gates are performed such that the final state of the
bits reveals the desired answer: a number which is the sum of the initial ones. While it
is possible to build algorithms that can perform almost any computation, it is also desir-
able to find the answer within a reasonable length of time or with reasonable amount of
resources. There is an ever growing demand in computational power for both scientific and
commercial purposes. Indeed, it is surprisingly easy to find an application that can jam
even the fastest computer. This fuels a vast effort in the research of information science in
increasing the speed and processing power of computers.

Modern computational models are based on the universal Turing machine [49]. This
is a theoretical information processing model that employs the elementary gate processes
described above. It can efficiently simulate any other device capable of performing an al-
gorithmic process. Since the introduction of the Turing machine physics has influenced
computation in many ways. Deterministic or probabilistic computation, the cloning prin-
ciple and irreversibility are well known principles of the classical world that almost sub-
liminally passed into the structures of programs [50]. The most profound influence was the
introduction of quantum logic. The possibility of a quantum Turing machine was initially
suggested by David Deutsch [51]. At the same time Richard Feynman [52], faced with the
difficult problem of simulating quantum systems with classical computers, suggested the
possibility of building a powerful computer out of quantum systems that would easily out-
perform classical computers. The idea of quantum computation was born, which opened
up numerous potential applications.

Conceptually, quantum computers follow the paradigm of their classical counterparts,
but with some distinct modifications. In place of the bit that describes the classical state 0
or 1 of a binary system there is the qubit. The qubit encodes the state of a binary quantum
system, which is in general a linear superposition of the states | 0〉 and | 1〉. Quantum me-
chanics also allows superpositions between states of many qubits, the so called entangled
states. The presence of entanglement dramatically increases the dimension of the encoding
space. Qubits are evolved by quantum gates. These are unitary operations that can per-
form any desired state transformation. Consistent computational model can be made out of
qubits and quantum gates that add intriguing new possibilities to classical computation.

The main obstacle for practical applications of quantum computers is to physically re-
alise them in the laboratory. For a computation to be reliable one needs to be very accurate
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in initialising qubits, performing quantum gates and reading the computational outcome.
Errors may enter the system in the form of control inaccuracies inherent to any experimen-
tal procedure or as uncontrollable perturbations from the environment of the computer.
Quantum error correction has been developed [17, 18] to overcome this problem. It allows,
at least theoretically, to correct errors and perform meaningful quantum information pro-
cessing. Still, the current thresholds for reliable quantum computation are much higher than
what is currently possible, even with state of the art experiments. Hence, there is an active
search for novel quantum computation architectures that resolve the problem of errors in a
more efficient way than current models.

Motivated by the richness of quantum physics a huge number of quantum computing
schemes have already been proposed. Novel computational models appeared which are
based on measurements [53], on adiabatic transitions [54], on geometric phases [55] or on
topological evolutions [16]. Each scheme has its own merits and drawbacks. Diverse as
they might look all models are computationally equivalent to the quantum Turing machine.
The topological quantum computation scheme will be presented in the next Chapter. In
this Chapter we lay down the principles of quantum computation and we review some
commonly used computational schemes.

3.1 Qubits and their manipulations

3.1.1 Quantum bits

Let us first focus on the encoding elements of quantum information, the qubits. The cru-
cial characteristics of qubits is that their states | 0〉 and | 1〉 can be prepared in any linear
superposition of the form

|ψ〉 = a0 | 0〉 + a1 | 1〉 , (3.1)

where a0 and a1 are complex numbers with |a0|
2 + |a1|

2 = 1. Equivalently, a “qudit” em-
ployes d states {| 0〉 , ..., | d − 1〉} to encode one element of information. When a qubit is
measured, then the state |ψ〉 collapses to its components along the measurement basis. If
the measurement is on the {| 0〉 , | 1〉} basis then the outcome is | 0〉 with probability |a0|

2

and | 1〉 with probability |a1|
2. The possibility to employ superpositions is a first point of

departure from classical computers. Such superpositions are responsible for the efficiency
of certain quantum algorithms compared to their classical counterparts. Another difference
is the way qubits are composed together. The general state of n qubits is described by

|ψ〉 =
∑

i1,i2,...,in={0,1}n
ai1,i2,...,in | i1, i2, ..., in〉 , (3.2)

where the ai1,i2,...,in ’s are complex coefficients with
∑

i1,i2,...,in={0,1}n |ai1,i2,...,in |
2 = 1. Here the

tensor product between states is employed such that | i1, i2, ..., in〉 = | i1〉 ⊗ | i2〉 ⊗ ... ⊗ | in〉.
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The summation in (3.2) runs over 2n numbers, thereby giving rise to an exponentially
large Hilbert space, while the classical encoding space is only 2n-dimensional. Such an
increase in the number of computational states can provide new shortcuts in the algorith-
mic evolutions from the input of computation to the desired answer, thus speeding up the
computation.

Quantum mechanically it is possible to have states of matter that can be described by
entangled states. These are superposition states that describe composite systems, such as
the ones given in (3.2). An example, is the maximally entangled state between two qubits
A and B

|ψAB〉 =
1
√

2

(
| 0A0B〉 + | 1A1B〉

)
, (3.3)

known as a Bell state. Measuring qubit A reveals instantaneously the state of qubit B even
if the two qubits are positioned at arbitrarily large distance apart. This correlation goes be-
yond the probabilistic scenario met in classical physics and is spectacularly witnessed by
the violation of the Bell inequalities [56]. Entangled states give rise to many dramatic ef-
fects ranging from the double slit experiment [57] to the Einstein-Podolsky-Rosen paradox
[58].

3.1.2 Decoherence and mixed states

When the quantum state of a system is not exactly known then classical probabilities mix
with the amplitudes of the quantum states. This can be the result of quantum decoherence,
due to the interaction of a quantum system with its environment. The system combined with
the environment can be described non-probabilistically and is subject to unitary evolutions.
However, ignoring the environment leads to effective non-unitary evolutions of the system
alone. In this case the system cannot be described by pure states such as the one given in
(3.2), but by density matrices.

Consider an orthonormal basis set of states {|ψi〉} of a system. Then its density matrix
can be written as

ρ =
∑

i

pi |ψi〉 〈ψi | , (3.4)

which implies that the state |ψi〉 occurs with probability pi. The normalisation of the prob-
abilities,

∑
i pi = 1, implies tr(ρ) = 1. The expectation value of an operator O with respect

to a density matrix ρ is given by

〈O〉ρ = tr(ρO) =
∑

i

pi 〈ψi |O |ψi〉 . (3.5)

Density matrices provide the most general description of a quantum system. For example,
a system in a pure state |ψ〉 has the density matrix

ρ = |ψ〉 〈ψ | . (3.6)
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If the density matrix cannot be written as in (3.6) then the system is in a mixed state. The
maximally mixed state of a qubit is given by

ρ =
1
2
| 0〉 〈0 | +

1
2
| 1〉 〈1 | . (3.7)

A mixed state reveals our ignorance about the quantum state of a system and can arise
in various ways. To illustrate this we now consider two qubits in the entangled state (3.3),
where A plays the role of a system and B the role of an environment. Assume you cannot
access qubit B at all. Mathematically, this corresponds to wiping out the information from
B by performing the following steps. First we create the density matrix of the composite
system ρAB = |ψAB〉 〈ψAB | and then we trace out the Hilbert space of B. The latter corre-
sponds to partially tracing the density matrix with respect to the indices of the B system,
giving finally

ρA = trB(ρAB) =
1
2
| 0A〉 〈0A | +

1
2
| 1A〉 〈1A | . (3.8)

The tracing procedure resulted in the maximally mixed state (3.7) for qubit A. Ignoring
part of a system leads in general into a mixed state.

Commonly, the environment is described by a very large Hilbert space, so its state is
considered to be inaccessible. Hence, a system that interacts with the environment is in
general described by a mixed state. If a system with Hamiltonian H is in thermal equi-
librium with its environment with temperature T then the density matrix of the system is
given by

ρ =
e−

H
kT

tr(e−
H
kT )
, (3.9)

known as thermal state, where k is the Boltzmann constant. This is a mixed state that
becomes pure only in the limit T → 0 (see Exercise 3.1).

If the computational state becomes mixed either due to interactions with the environ-
ment or due to lack of detailed knowledge about our control procedure, then the quantum
computation can give erroneous results. The aim of topological quantum computation is to
keep the computational states as close as possible to the desired pure quantum states.

3.1.3 Quantum gates and projectors

The processing of the encoded quantum information is usually performed by quantum
gates. These are reversible quantum evolutions that operate on one, two or more qubits
simultaneously, in the same way as classical gates do. As quantum evolutions are described
by unitary matrices, quantum gates between n qubits are elements of the unitary group
U(2n). For example, one qubit gates include the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.10)
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Here σx is known as the classical NOT gate that changes the input 0 or 1 to the output 1 or
0, respectively. A more intriguing gate is the Hadamard gate given by

H =
1
√

2

(
1 1
1 −1

)
(3.11)

that transforms | 0〉 into the quantum superposition (| 0〉 + | 1〉)/
√

2 and | 1〉 into (| 0〉 −
| 1〉)/

√
2. This operation corresponds to a rotation of the original basis by π/4 around the z

axis.
To create entanglement between two qubits we need to introduce two qubit quantum

gates. An important class of two qubit gates is the controlled gates, CU. These gates treat
one qubit as the controller and the other one as the target. The action of CU is to leave
the target qubit unaffected when the control is in state | 0〉 and to apply the unitary matrix
U on the target qubit when the control is in state | 1〉. An example of such a gate is the
controlled-NOT gate, also known as CNOT, where U = σx. It is explicitly given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.12)

The controlled-phase gate, also known as CP, has U = σz and is given by

CP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (3.13)

One can show that all CU gates are unitary when U is a unitary matrix. The controlled
character of these gates makes them capable of generating entangled states. For example,
applying a CNOT to the unentangled two qubit state (| 0〉 + | 1〉)/

√
2 ⊗ | 0〉 gives

CNOT
(
| 0〉 + | 1〉
√

2
⊗ | 0〉

)
=

1
√

2
(| 00〉 + | 11〉) , (3.14)

which is a maximally entangled state of two qubits. Another often considered gate is the
SWAP gate, which exchanges the states of two qubits, such that SWAP| i j〉 = | ji〉. The
SWAP gate is not an entangling gate since it can also be performed in classical bits but
is still very useful in quantum algorithms. Multi-qubit gates are also possible with many
controlled qubits and one or more target qubits. Usually, when we say that we can realise
a specific set of gates we assume that we are able to apply each of them to any qubits we
want.

Beyond unitary evolutions the manipulation of quantum information can include pro-
jectors. These are a set of operators {Pi} that square to themselves and the product of two
different projectors Pi and P j can be chosen to be zero

P2
i = Pi and PiP j = 0 for i , j. (3.15)

When a projector acts on a certain quantum state it gives back its component within a
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certain subspace of the Hilbert space. An application of projectors is to employ them as a
mathematical tool for the measurement of qubits. For example, the operator

P0 = | 0〉 〈0 | =
(

1 0
0 0

)
(3.16)

projects the general qubit state |ψ〉 = a | 0〉+b | 1〉 to | 0〉with probability |a|2 = tr(|ψ〉 〈ψ | P0).
The projector onto the state | 1〉 is given by P1 = 12 − P0, where 12 is the two-dimensional
identity matrix. A measurement along a general direction of the one qubit state space can
be obtained by the projector P = |ψ〉 〈ψ | with |ψ〉 = cos θ | 0〉 + eiφ sin θ | 1〉. The identity
operator can be decomposed into a sum of projection operators

1 =

N∑
n=1

|ψn〉 〈ψn | (3.17)

where {|ψn〉 , n = 1, ...,N} is a complete orthonormal set of basis states.
The projection space of states does not need to be one-dimensional. For example, the

operator P = | 0〉 〈0 | + | 1〉 〈1 | projects the quantum state |ψ〉 = a | 0〉 + b | 1〉 + c | 2〉 with
|a|2 + |b|2 + |c|2 = 1 on the two-dimensional subspace described by the general state |ψ′〉 =

(a | 0〉 + b | 1〉)/
√
|a|2 + |b|2. Projections of a many-qubit state onto an entangled two qubit

state can also be considered. For example, P = |ψ〉 〈ψ | with |ψ〉 = (| 00〉 + | 11〉)/
√

2
projects any two qubit state onto this maximally entangled state.

Another application of projectors is to define Hamiltonians with very specific properties.
Assume we want to build a Hamiltonian that has the state |ψ0〉 as its ground state. Suppose
we know a set of Hermitian projectors Pi, i = 1, ..., k that project to different subspaces
that are not orthogonal. If all of these subspaces have a single common state |ψ0〉, i.e.
Pi |ψ0〉 = |ψ0〉 for all i, then the Hamiltonian

H = −

k∑
i=1

(1 − Pi), (3.18)

has |ψ0〉 as its ground state with eigenvalue E0 = 0. Such a description will be employed
in Chapter 5 to present a certain topological model.

3.2 Quantum circuit model

Let us now present the basic characteristics of the quantum circuit model. This computa-
tional model employs a sequence of quantum gates acting on a series of qubits to transform
their initial state into the desired output. The total unitary evolution that acts on the qubits
is called the algorithm. If we have at our disposal a so-called complete set of quantum
gates then we can realise an arbitrary quantum algorithm. An example of a circuit model
that consists of one and two qubit gates is given in Figure 3.1. There, all qubits are ini-
tialised in the state | 0〉. The boxes symbolise gates while the lines indicate the qubits on
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tFig. 3.1
An example of circuit model, where time evolves from left to right. Qubits are initially prepared in
state | 0〉 and one and two qubit gates, such as U, V and W, are acted on them in succession.
Boxes attached on a single line correspond to single qubit gates while boxes attached on two
lines correspond to two qubit gates.

which a gate acts. A measurement of all the qubits at the end of the computation reveals
the outcome. Expressing an algorithm in terms of basic quantum gates makes it easy to
evaluate its resources and complexity.

3.2.1 Quantum algorithm and universality

A specific quantum algorithm U applied on n qubits is an element of the unitary group
U(2n). It acts on an initially prepared quantum state |ψ0〉 that encodes the input of the
problem. Its output state |ψ〉 = U |ψ0〉 encodes the solution of the problem. The algorithm
needs to be designed such that the information encoded in |ψ〉 can be read by projective
measurements. Usually, we take | 00...0〉 as the initial state and the encoding of input step
|ψ0〉 = U0 | 00...0〉 is considered part of the algorithm. The unitary matrix U0 depends on
the information we want to encode, while the algorithm U is independent of the input of
the computation. It depends only on the number, n, of employed qubits.

To realise a given algorithm we would like to break it down into smaller elements that
are physically easier to implement. Commonly, these smaller elements are one and two
qubit gates that can be applied to any desired qubit at any time. Composed together in a
temporal fashion they give rise to the circuit model of quantum computation.

A natural question arises: which types of quantum gates are needed to be able to per-
form any given algorithm? For example one could try to employ as few different types of
quantum gates as possible acting only on a small number of qubits at the time, e.g. one
or two. A finite set of quantum gates that can efficiently generate any given unitary matrix
is called universal. Universality is an important property that needs to be satisfied from
any implementation scheme of a quantum computer. Several universal sets of quantum
gates are known. The simplest one comprises of arbitrary one qubit gates and a maximally
entangling two qubit gate like the CNOT gate.

An alternative way to formulate the above universality condition, without resorting to
qubits, is the following. We want to find a small set of unitary matrices that can reproduce
an arbitrary given element of U(N). This can be achieved by taking two unitary matrices
of U(N) and calculating their product. By multiplying them, a third, independent unitary
matrix is produced. This processes can be iterated several times, where each time we al-
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low to employ any unitary matrix from the previous steps. If the two initial matrices are
correctly chosen, then the output of the procedure densely covers the whole unitary group
U(N). An arbitrary unitary matrix in U(N), e.g. corresponding to an algorithm, can thus
be produced with a controllable error [59]. If a physical system supports a set of unitary
matrices that can densely span U(N), then it can operate as a universal quantum computer.
In practice, the considered unitary matrices are often sets of one and two qubit gates. This
description is of particular interest to topological quantum computation, where statistical
evolutions provide the available set of unitary matrices. It can thus determine if a given
anyonic model is universal or not [60, 61].

To date several quantum algorithms are known that have the potential to outperform
the corresponding classical algorithms. Among them two algorithms are most prominently
shaping the landscape of quantum computation. These are the factoring algorithm by Peter
Shor [14] and the searching algorithm by Lov Grover [13]. The factoring algorithm deter-
mines the prime factors of a given integer. This is an important algorithm as many modern
secure data encryption protocols are based on the fact that there is no known efficient clas-
sical algorithm for this task. By efficient we mean that the amount of resources, e.g. the
number of gates that need to be performed during the computation, increase only polyno-
mially with the size of the input. The amount of resources of all known classical factoring
algorithms increase exponentially with the size of the number we want to factor. Hence we
are currently unable to factor arbitrary large numbers. Shor invented a quantum algorithm
that would perform this task efficiently [14], thus making the construction of a quantum
computer highly desirable.

Classically, searching an unsorted database by going through all its elements takes a time
that increases linearly with the size of the database. Grover proved that a quadratic speedup
is obtained if the database is searched by a quantum computer [13]. While this does not
constitute an exponential speedup as in the case of the factoring algorithm, it is known that
we cannot ever build a classical algorithm that can do better than “linear”. Moreover, it is
known that the quadratic speedup of quantum computation is actually optimal.

There are more quantum algorithms that perform several tasks, but none of them appears
to have yet a general impact as the factoring or searching algorithms. In Chapter 8 we
present a quantum algorithm [62] that outperforms its classical counterpart in the task of
evaluating Jones polynomials. The latter are topological invariants of links and knots that
have several applications, albeit being specialised.

3.2.2 Computational complexity

From the previous analysis it is easy to imagine that employing quantum logic might actu-
ally give rise to faster algorithms compared to the classical ones. But how much faster can
they be? Among other things information theory deals with the classification of various
problems in different complexity classes [12, 50]. These are determined by the speed we
can solve them. Essentially, there are two classes of problems: the ones that can be solved
in polynomial time as a function of the input size of the problem, and the ones that need an
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Table 3.1 Computational complexity

P Polynomially easy to solve
NP Polynomially easy to verify solution

BQP Polynomially easy to solve with quantum computer

exponential amount of time. The latter problems become computationally intractable even
for moderate input sizes. Problems that can be solved in polynomial time are called easy
while the ones that require an exponential time are called hard.

The simplest complexity class denoted by P consists of the problems that can be solved
polynomially fast with classical computers. Similarly, NP denotes the class of problems for
which one can efficiently verify if a given statement is a solution to the problem or not. All
P problems are also NP as finding a solution means that you can also verify it efficiently.
The converse is not always true. In particular, all known algorithms strongly suggest that
there are elements in NP that do not belong in P. In other words there exist problems that
are computationally hard to solve on a classical computer, i.e. they need an exponential
amount of resources, even though a known solution could be verified in polynomial time.

The invention of quantum computers introduced a new class of problems called BQP.
This class includes all problems that can be solved easily on a quantum computer. The
characterisation of this class of problems with respect to their classical counterparts has
proved challenging. For example, it is not yet known if there are non-P problems, i.e. clas-
sically exponentially hard problems, that belong into BQP, i.e. they can be easily solved
in a quantum computer. A proof of their existence would establish quantum computing
as a new computational paradigm in terms of efficiency. Indeed, we do not know for sure
whether or not there exists a classical P algorithm that can factor efficiently. Also the ex-
istence of a quantum searching algorithm does not change the complexity class of the
corresponding classical algorithm, since it does not provide an exponential speedup. Table
3.1 summarises the main computational complexity classes.

It is surprising that, even though a significant amount of research is dedicated to quan-
tum algorithms, very few, albeit important, algorithms exist that have a wide applicability.
Moreover, none exists that could shift the complexity class of BQP to include NP-hard
problems. This might be due to our lack of hands-on experience when it comes to dealing
with the quantum world. Nevertheless, it is known that quantum computers can perform
certain useful tasks exponentially faster than classical ones, like factoring large numbers.
Hence, the need for constructing full scale quantum computers is much more than just a
curiosity. It could change the way we process information with the potential of a wide
range of applications in security, technology, science and entertainment.
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3.3 Other computational models

The quantum circuit model offers a straightforward architecture for building a quantum
computer. It can be implemented by turning on and off designed interactions with time
evolutions that correspond to quantum gates. Interestingly, this is not the only possible way
to process quantum information. The desired algorithm, given in terms of a unitary matrix
U, can also be realised in a number of different ways. This plurality of implementations
stems from the variety of exotic effects harboured by quantum mechanical systems. In
the following we describe three alternative ways to process information, namely one-way
quantum computation [53], adiabatic quantum computation [54] and holonomic quantum
computation [55]. Although these methods may seem fundamentally different from the
circuit model, they are all computationally equivalent to it. Our interest in these models is
due to their similarities with topological quantum computation or due to the possibility of
combining them with topological manipulations, thereby resulting in new computational
paradigms.

3.3.1 One-way quantum computation

The starting point and initial resource of one-way or measurement based quantum compu-
tation [53] is a highly entangled state between qubits, the cluster state. Once the resource
has been prepared, performing an algorithm requires only single qubit measurements and
classical processing of the measurement outcomes. The underlying principle of this quan-
tum computing method is the following: it realises a reversible evolution of an encoded
Hilbert space by measurements on the qubits that are prepared in the cluster state. When
these non-reservable measurements are performed in a clever way they induce a unitary
evolution of the encoded qubits.

Let us start with the description of the cluster state |ψc〉. Consider qubits residing at the
vertices of a square lattice. Take the complete set of Hermitian operators

Ti = σx
i σ

z
ii
σz

i2
σz

i3
σz

i4
, (3.19)

where i is a site of the lattice and i1, ..., i4 are its four neighbouring vertices, as illustrated
in Figure 3.2(a). The operators Ti are modified at the boundaries so that the operators that
correspond to vertices outside the lattice are absent. Since all Ti’s commute with each other,
it is possible to find a common set of eigenstates by diagonalising each of them separately.
As T 2

i = 1 their eigenvalues are ±1. The cluster state |ψc〉 is hence uniquely defined by the
condition

Ti |ψc〉 = |ψc〉 , for all i. (3.20)

A useful property of |ψc〉 is that all of its qubits are maximally entangled with their neigh-
bours. If we measure one of the qubits of the cluster state then this qubit is removed from
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(a) A cluster state can be defined on a square lattice with qubits at its vertices. The stabiliser
operator Ti = σx

i σ
z
i1
σz

i2
σz

i3
σz

i4
is defined to act on i and on its neighbouring qubits. A reduced

version of the stabiliser operator is defined on the boundary of the system, e.g. T j = σx
jσ

z
j1
σz

j2
σz

j3
.

(b) Qubits 1 and 2 are depicted that are prepared in a two qubit cluster state. When we perform
a measurement on qubit 1 along a particular axis then qubit 2 is evolved in a non-trivial way.

the state while the rest remain entangled with each other. Actually, each measurement on
boundary qubits along an arbitrary axis transforms all other qubit states in a non-trivial
way. When the measurement outcome is known, then we can write this transformation as
a unitary evolution. Consider a rectangular cluster state, such as the one shown in Figure
3.2(a). Suppose we perform measurements on each column of qubits from left to right,
thus simulating the passage of time. It has been shown that particular patterns of measure-
ments can give rise to single qubit rotations and the controlled-NOT gate [53]. This makes
one-way quantum computation equivalent to the circuit model.

A simple example that demonstrates the principle of one-way quantum computation is
the smallest possible, non-trivial cluster state that contains only two qubits, shown in Figure
3.2(b). Its stabilisers are

T1 = σx
1σ

z
2 and T2 = σz

1σ
x
2. (3.21)

The state which satisfies T1 |ψc〉 = |ψc〉 and T2 |ψc〉 = |ψc〉 is given by

|ψc〉 =
1
√

2

(
|+0〉 + | −1〉

)
, (3.22)

where | ±〉 = (| 0〉±| 1〉)/
√

2. Let us measure qubit 1 in a rotated basis | 0(θ, φ)〉 = U(θ, φ) | 0〉
and | 1(θ, φ)〉 = U(θ, φ) | 1〉, where

U(θ, φ) =

(
cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
(3.23)

is an arbitrary SU(2) matrix. The angles θ and φ determine the direction of the measure-
ment. One can show that the measurement outcome | 0〉 on the first qubit results in the
state

|ψ0〉 = P(φ)R(θ) | 0〉 (3.24)

for the second qubit, while the outcome | 1〉 results in the state

|ψ1〉 = σzP(−φ)σxR(θ) | 1〉 (3.25)
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for the second qubit, where

P(φ) =
1
√

2

(
1 eiφ

1 −eiφ

)
and R(θ) =

(
cos θ sin θ
sin θ − cos θ

)
. (3.26)

The above example shows that it is possible to implement any single qubit rotation on the
second qubit of the cluster state by performing a measurement in an appropriately chosen
basis on the first qubit. This reverse engineering generates P(φ) and R(θ) unitary rotations.
A similar principle applies to measurements of a large two-dimensional cluster state that
can produce arbitrary one and two qubit gates. Hence, universality of one-way quantum
computation can be demonstrated by drawing its analogy to the circuit model. Although
being essentially equivalent, cluster state quantum computation is desired over the circuit
model when the preparation of a cluster state and single qubit measurements are physically
easier to perform than the successive application of entangling quantum gates.

3.3.2 Adiabatic quantum computation

In adiabatic quantum computation [54] the algorithm is produced by an adiabatic process.
To see how this is possible consider a Hamiltonian with a non-degenerate ground state and
a well defined energy gap above it. We assume now that the Hamiltonian acts on a set of
particles that encode qubits and that we can change the Hamiltonian in a controlled way. In
this scheme information is encoded in the ground state of the Hamiltonian. For this encod-
ing to be meaningful we assumed that there is a finite energy gap above the ground state
at all times. Processing of information is performed by slowly changing the Hamiltonian
parameters so that, due to adiabaticity, the system remains in its unique ground state. The
condition that ensures adiabaticity is that the kinetic energy that corresponds to the speed
with which we change the parameters of the Hamiltonian is much smaller than the energy
gap above the ground state. So transitions to excited states are suppressed and the system
is well described at all times by its ground state. The manipulation of the Hamiltonian is
performed so that the initial ground state can be prepared easily while the final ground state
is the desired solution of the problem in question.

To be more concrete, consider the Hamiltonian

H(λ) = (1 − λ)Hi + λH f , (3.27)

where the parameter λ is monotonic in time, e.g. λ = t/T . The initial Hamiltonian Hi is a
simple one with a known ground state |ψi〉. The final Hamiltonian H f is designed so that
its unique ground state,

∣∣∣ψ f

〉
, is the solution of the computational problem at hand. Even

when the state
∣∣∣ψ f

〉
is hard to evaluate, the Hamiltonian H f could be easily constructible.

For example, if we were interested in a satisfiability problem we can energetically penalise
every configuration that violates any of the conditions we want to satisfy. Hence, the ground
state of H f will violate the least number of such conditions.

Adiabatic quantum computation gives a way to obtain
∣∣∣ψ f

〉
from an adiabatic evolution.

To achieve this we require that H(λ) remains gapped at all times, i.e. the energy splitting
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(a) The energy gap ∆E of a simple two qubit Hamiltonian H(λ) = (1 − λ)(−σz

1 − σ
z
2)

+λ(−σz
1σ

z
2 − σ

x
1σ

x
2) that takes the product state | 00〉 to the entangled state (| 00〉 + | 11〉)/

√
2 when

λ changes adiabatically from 0 to 1. More complex problems give rise to smaller minimum
energy gaps, thus forcing the adiabatic evolution to slow down. (b) Different paths can be taken
in the parametric space {λ1, λ2} with initial and final points that correspond to |ψi〉 and

∣∣∣ψ f

〉
,

respectively. These paths may be short, passing near critical regions, or long, avoiding any
criticality.

between the ground state and the excited one does not become zero for any λ. At t = 0
we prepare the state of the system to be its ground state, i.e. |ψ(0)〉 = |ψi〉. Subsequently,
we change the parameters of the Hamiltonian for time T obtaining finally the state |ψ(T )〉.
We take T to be large enough compared to the minimal gap of the Hamiltonian so that the
adiabatic approximation holds and the final state |ψ(T )〉 is very close to the target state∣∣∣ψ f

〉
.

As an example consider a two qubit system subject to the Hamiltonian (3.27) with

Hi = −σz
1 − σ

z
2 (3.28)

and

H f = −σz
1σ

z
2 − σ

x
1σ

x
2. (3.29)

The ground state of the initial Hamiltonian, Hi, is

|ψi〉 = | 00〉 (3.30)

and the ground state of the final Hamiltonian, H f , is∣∣∣ψ f

〉
= (| 00〉 + | 11〉)/

√
2. (3.31)

By slowly increasing λ from 0 to 1 compared to the smallest energy gap of H(λ) a maxi-
mally entangled state

∣∣∣ψ f

〉
is obtained out of a product state |ψi〉. During this process the

Hamiltonian remains always gapped, i.e. there is a non-zero energy gap ∆E between the
ground state and the first excited, as shown in Figure 3.3(a).

In adiabatic quantum computation the computational complexity of a problem is mainly
given in terms of the overall time of the evolution, T . In particular, the evolution time T (n)
depends on the number, n, of qubits the Hamiltonian H(λ) acts on. It is expected that the
larger the number n the longer the evolution will last. By studying specific examples like
Grover’s searching algorithm [64] it is possible to see that at certain points of the evolution
the energy gap becomes small, as shown in Figure 3.3(a). To satisfy the adiabaticity con-
dition the evolution needs to be slower in this neighbourhood, thus increasing the overall
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time T (n). When n tends to infinity then the gap goes to zero for some value of λ. This λ
constitutes a quantum critical point, as shown in Figure 3.3(b). By employing more than
one control parameters, it is possible to avoid critical regions and to construct an evolution
that does not need to slow down to remain adiabatic. Nevertheless, the path becomes longer
so a longer time needs to be spent to traverse it.

It is an amazing fact that adiabatic quantum computation is actually equivalent to the
circuit model [63]. Known quantum algorithms can be translated to Hamiltonian (3.27)
where the computation is realised in terms of an adiabatic evolution rather than in terms
of precisely timed interactions. As we shall see later, topological quantum computation
resembles an adiabatic quantum computation with constant energy gap, where the quasi-
particle coordinates provide the control parameters of the Hamiltonian.

3.3.3 Holonomic quantum computation

We have seen in Chapter 2 that Abelian [24] and non-Abelian [30] geometric phases de-
scribe certain evolutions of quantum systems in terms of geometric means. In this subsec-
tion we show how one can employ these evolutions to perform quantum computation [55].
We start with an energy degenerate quantum system subject to adiabatic cyclic evolutions
in some parametric space of a Hamiltonian. The corresponding logical state space consists
of degenerate states. The quantum logical gates are given in terms of non-Abelian geomet-
ric phases acting on this space. In order for such a system to support qubits the degenerate
subspace needs to have a natural tensor product structure. Moreover, the control space
needs to be rich enough such that arbitrary geometric evolutions can be built resulting in
universality.

One qubit holonomic gates can be realised with a three level system, |α〉, α = 0, 1, 2
subject to the Hamiltonian

H(z) = U(z)H0U(z)† with H0 =


0 0 0
0 0 0
0 0 1

 . (3.32)

Non-trivial isospectral transformations of H0 are parameterised by the U(2) rotations be-
tween states | 0〉 and | 2〉 as well as between | 1〉 and | 2〉, as shown in Figure 3.4(a). A gen-
eral transformation is given by the unitary rotation U(z) = U1(z1)U2(z2), with Uα(zα) =

exp(zα|α〉〈2| − z̄α|2〉〈α|) for α = 0, 1. The complex parameter zα may be decomposed as
zα = θα exp iφα. As we have seen in Subsection 2.2.2, when loops C are adiabatically
spanned in the parametric space of this system, we obtain the holonomies

ΓA(C) = P exp
∮

C
A · dλ, where (Aµ)αβ = 〈α|U†(λ)

∂

∂λµ
U(λ)|β〉. (3.33)

Here P is the path ordering symbol, α, β = 0, 1 parameterise degenerate states and λµ ∈
{θ1, θ2, φ1, φ2}. The connection A is a vector whose components are matrices. As it is irre-
ducible, the holonomy ΓA(C) can generate the whole group U(2).

We now want to realise specific gates out of holonomic evolutions. If, for example, we
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(a) A diagram that represents the transformations of H(z). Three states are depicted together
with the two unitary rotations U1(z1) and U2(z2) that give rise to holonomic one qubit gates. (b)
The composite rotation U(z) between two subsystems gives rise to a two qubit gate.

want to implement U ∈ U(2) we have to find the loop C such that ΓA(C) = U. To find the
appropriate C we perform the following analysis. The loop integral∮

C
A · dλ =

∮
C

Aλ1 dλ1 + Aλ2 dλ2 + Aλ3 dλ3 + · · · (3.34)

is the main ingredient of the holonomy. Due to the path ordering symbol P it is not pos-
sible to just calculate it and evaluate its exponential as the connection components do not
commute with each other in general. Still it is possible to consider particular loop configu-
rations that bypass this problem. First, choose C such that it lies on one plane (λ1, λ2). So
only two components of A are involved. Second, choose the position of the plane so that
A ·dλ = Aλ2

dλ2, i.e. the connection restricted on this plane becomes Aλ1
= 0. Then the two

components of A commute with each other and the path ordering symbol can be dropped.
Still the related curvature, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν], can be non-vanishing, thereby
giving rise to a non-trivial holonomy.

To apply this approach to Hamiltonian (3.32) we choose the following loops with the
corresponding holonomies. For C1 ∈ (θa, φa) with a = 1, 2 we have

ΓA(C1) = exp(−iΣ1σ
3
α), (3.35)

where σ3
α = |α〉〈α| with α = 0, 1 and where Σ1 is the area of the surface the path C1

encloses when projected on a sphere with coordinates 2θa and φa. For C2 ∈ (θ1, θ2) with
φ1 = 0 and φ2 = 0 we have

ΓA(C2) = exp(−iΣ2σ
2) (3.36)

with σ2 = −i|0〉〈1| + i|1〉〈0|. Here Σ2 is the area on the sphere with coordinates θ1 and θ2.
Hence, we have enough freedom to produce any arbitrary one qubit gate.

A set of m such subsystems gives rise to m qubits. In order to generate a two qubit gate
we need to implement rotations between the states of two subsystems, as the ones shown in
Figure 3.4(b). As an example we take the U(2) rotation in the tensor product basis of two
subsystems, between the states |11〉 and |22〉, given by U(z) = exp(z|11〉〈22| − z̄|22〉〈11|),
with z = θ exp iφ. The corresponding connection components are given by

Aθ = 0 , Aφ = diag(0, 0, 0,−i sin2 θ), (3.37)
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written in the basis {|00〉, |01〉, |10〉, |11〉}. A loop C on the (θ, φ) plane produces the follow-
ing holonomy

ΓA(C) = diag(1, 1, 1, e−iΣ), Σ =

∫
D(C)

dθdφ sin 2θ. (3.38)

For Σ = π we obtain the controlled-phase CP gate. The ability to produce the CP gate
between any qubits together with arbitrary one qubit rotations leads to universality. This
simple model for holonomic quantum computation was first presented in [65]. A proposal
for its physical realisation with trapped ions can be found in [66].

Holonomic quantum computation resembles the adiabatic scheme we have seen in Sub-
section 3.3.2. The essential ingredient of adiabatic evolution is present in both schemes.
The holonomic approach further employs a degenerate space of states and it can have a
clear interpretation in terms of quantum gates. In this way it resembles the circuit model.
By its turn topological quantum computation can be considered as holonomic computation
where the employed adiabatic evolutions are topological in nature.

Summary

Quantum computation provides the fascinating perspective of employing the unconven-
tional logic of quantum mechanics to achieve fast information processing. To attain that
we need to identify a quantum system with a large Hilbert space where quantum informa-
tion can be encoded. Quantum information processing is achieved with a set of quantum
gates induced by controlling this system with external knobs. When engineering a quantum
system as a potential quantum computer one needs to identify a tensor product structure in
its Hilbert space that can guarantee the exponential increase in its dimension as a function
of its physical size. Moreover, the control of the system needs to be sufficiently rich in
order to be able to perform any arbitrary unitary evolution of the Hilbert space. This results
to universality, which is our ability to perform any desired quantum algorithm.

There are several ways one could encode and manipulate a quantum system. Here we
briefly presented three different ways: one-way quantum computation, adiabatic quantum
computation and holonomic quantum computation. All of them are based on different man-
ifestations of quantum phenomena. Fascinating as they might be, quantum computational
systems are very fragile. They are naturally coupled to their environment, which can alter
or even erase the encoded quantum information through quantum decoherence. To date no
physical realisation of quantum computation exists that can offer adequate protection from
the environment. Moreover, quantum control procedures need to be refined to be meaning-
ful in manipulating quantum information.

Quantum error correction is an algorithmic method that aims to protect encoded in-
formation for sufficiently low error rate. The current bounds on tolerable error rates are
formidably low. Moreover, to implement quantum error correction a vast amount of over-
head in qubits and quantum gates is required. Topological quantum computers emerged
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from the idea of trying to address error problems already at the hardware level. It employs
some of the most exotic properties of quantum mechanics, namely anyonic statistics, to en-
code and manipulate information. This approach is naturally fault-tolerant to control errors
as well as robust against environmental perturbations. The main elements of topological
quantum computation are presented in the next Chapter.

Exercises

3.1 Consider (3.9) that describes a system at a given temperature. Demonstrate that at
very low temperatures the state of the system corresponds to the ground state. [Hint:
Use the expansion of the Hamiltonian in terms of its eigenstates].

3.2 Take a unitary matrix U to be block diagonal of dimension 2n, for integer n ≥ 2,
with each block being a σx matrix. How many single qubit gates one needs in order
to simulate U? If this U was a classical operator how many classical single bit gates
would one need in order to simulate it? [Hint: Consider the tensor product structure
of n qubits].

3.3 Consider the one-dimensional cluster state with two qubits. In which basis do we
need to measure one of the qubits in order to prepare the second qubit in the state
(| 0〉 + i | 1〉)/

√
2?

3.4 Consider the geometric evolutions of two systems as given in Subsection 3.3.3. Hav-
ing the composite system initiated in the state |ψ〉 = | 00〉, which loops in the para-
metric space and in which order does one need to traverse in order to obtain a maxi-
mally entangled state?



4 Computational power of anyons

Topological quantum computation encodes and manipulates information by exclusively
employing anyons. To study the computational power of anyons we plan to look into their
fusion and braiding properties in a systematic way. This will allow us to identify a Hilbert
space, where quantum information can be encoded fault-tolerantly. We also identify uni-
tary evolutions that serve as logical gates. It is an amazing fact that fundamental properties,
such as particle statistics, can be employed to perform quantum computation. As we shall
see below, the resilience of these intrinsic particle properties against environmental pertur-
bations is responsible for the fault-tolerance of topological quantum computation.

Anyons are physically realised as quasiparticles in topological systems. Most of the
quasiparticle details are not relevant for the description of anyons. This provides an addi-
tional resilience of topological quantum computation against errors in the control of the
quasiparticles. In particular, the principles of topological quantum computation are inde-
pendent of the underlying physical system. We therefore do not discuss its properties in
this chapter. The abstraction might create a conceptual vacuum as many intrinsic proper-
ties of the system might appear to be absent. For example, we shall not be concerned with
the trapping and transport of anyons or with geometrical characteristics of their evolutions.
In this chapter we treat them as classical fundamental particles, with internal quantum de-
grees of freedom, much like the spin. Moreover, we assume that we have complete control
over the topological system, in terms of initial state preparation and final state identifica-
tion. Details how this can be achieved on concrete physical implementations can be found
in later chapters, where explicit topological systems are considered.

This chapter presents the inception of anyonic models. It introduces the necessary steps
to consistently define an anyonic theory from basic principles. The first step is to define
a finite set of anyonic particles, or species. We identify the vacuum of this set as the triv-
ial particle. Moreover, every particle should have its own antiparticle. These particles are
characterised by internal degrees of freedom, which are associated with quantum numbers.
Relations between these quantum numbers are obtained by the fusion rules, which dic-
tate what type of species are obtained when combining two particles together. The next
step is to verify if the defined model satisfies a set of consistency conditions. These are
known as the pentagon and hexagon equations named after their characteristic geometric
configuration. A discrete set of solutions is obtained from these equations that determine
the braiding properties of the particles. The fusion and braiding properties are sufficient to
obtain concrete models that can be used for topological quantum computation.
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tFig. 4.1 Worldlines of particles that are positioned on a plane with time flowing downwards. An exchange
of two particles, a and b, is depicted in terms of braided worldlines. A pair-creation from the
vacuum of a particle a and its antiparticle ā corresponds to two lines initiated at the same
position. Fusion of two particles a and b is given by two lines coming together and producing a
third particle c.

4.1 Anyons and their properties

We now present the fundamental properties of anyons in a systematic way. It is convenient
to keep track of the anyon history by employing their worldlines. In this way we can easily
visualise statistical processes and predict the time evolution of anyonic states. Examples
of such processes are depicted in Figure 4.1. There, we assume that we can trap and move
anyons around the plane leading to worldlines in 2 + 1 dimensions. Exchanges of two
anyons can be described by just braiding their worldlines. We can also depict the pair-
creation of anyons from the vacuum as well as the fusion process that occurs when they
are brought together, thereby resulting in a new anyon. Since we employ the worldlines
to represent topological evolutions, no attention needs to be paid to their exact shape. We
only need to focus on their global characteristics.

4.1.1 Particle types

Our starting point is to recognise that there can be a variety of different anyonic models.
Each model is determined by the statistical properties of its particles. Let us consider such
a particular model. To describe it we introduce finitely many different species of particles.
When they are realised in a topological system they correspond to quasiparticle excita-
tions that can be distinguished according to their properties with respect to certain physical
observables. In the following we shall use the terminologies of “particle”, “anyon” and
“quasiparticle” in an interchangeable way.

Consider a set of particle types

1, a, b, c, ..., (4.1)

where 1 corresponds to the unique vacuum, while a, b, c,... correspond to a finite series of
different particle types. The simplest non-trivial model contains one more particle than the
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vacuum. Every particle, a, needs to have its own antiparticle, ā, which could be itself, so
that they can be pair-created from the vacuum. Each particle can be locally distinguished
by its topological or anyonic charge, which is a conserved quantum number. For example,
the anyonic charge indicates whether a particle corresponds to the vacuum, to a boson
or to a fermion. Particles with richer anyonic properties can be similarly identified. The
anyonic charge is better described in combination with the rest of the anyonic particles in
the system, as we shall see in the following.

4.1.2 Fusion rules of anyons

We now consider the fusion properties of finitely many anyons that belong to a given
model. The fusion corresponds to bringing two anyons together and determines how they
behave collectively. No interactions need to take place between the anyons. Fusion can be
viewed as putting two anyons in a box and identifying the statistical behaviour of the box.
In general, the fusion rules are written as

a × b = Nc
abc + Nd

abd + ... . (4.2)

These rules indicate the possible outcomes c, d, ..., listed with the + symbol, that result
when anyons a and b are brought together, denoted by the × symbol. The ordering of a and
b is not important, so that

a × b = b × a. (4.3)

When a and b are fused there might be several distinct mechanisms that produce particle
c, which are enumerated by the integers Nc

ab.
It is possible to prepare two anyons in a certain way so that they have a unique fusion

outcome. For example, two anyons produced from a vacuum pair-creation have the vacuum
as their unique fusion channel. So the several possible outcomes on the right hand side of
(4.2) could be understood as different possible preparations of a and b that would result
to a certain fusion outcome. Finally, the fusion process can be time reversed. Consider the
case where the fusion of a and b gives a specific fusion outcome c. When time is inverted
the same process describes the splitting of anyon c into its constituent particles a and b.

Anyons are systematically characterised by their fusion behaviour. For example, Abelian
anyons have only a single fusion channel

a × b = c. (4.4)

Their fusion space is one-dimensional. In contrast, non-Abelian anyons always have mul-
tiple fusion channels that give rise to higher dimensional fusion spaces∑

c

Nc
ab > 1. (4.5)
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tFig. 4.2 When the order of fusion between three anyons, a, b and c with outcome d is changed then a
rotation in the fusion space is performed given by the matrix Fd

abc. In this diagrammatic equation
the index i denotes a certain anyon, while the summation in j ranges through all possible fusion
outcomes of b and c.

This simple property is closely related to their statistical behaviour. As we shall see below,
non-Abelian statistics is manifested as a non-trivial evolution between the different pos-
sible fusion outcomes given in (4.2). Abelian statistics corresponds to the evolution of a
unique state by a phase factor.

When we fuse several anyons we are free to choose the ordering in which the basic fusion
processes take place. For example, three anyons, a, b and c with total fusion channel d can
be fused in two different ways. Fusing a and b might have an outcome i that is different
than the outcome j of fusing b and c. These are the only two distinctive possible orders
in which one can fuse three anyons. Having i and j different is consistent with having
a fixed total fusion outcome, d. Explicitly, fusing i with c gives d and fusing j with a
gives d as well, as shown in Figure 4.2. This is much like the different ways one can
combine the z components of several spin 1/2 particles to obtain a given value for the
spin of their composite. The matrix Fd

abc with i, j elements (Fd
abc)i

j that relates these two
different processes is called the fusion or F matrix and its action is illustrated in Figure 4.2.
The dimensionality of this matrix depends on the number of possible in-between outcomes
of the fusions.

The choice of fusion order is a degree of freedom in the description of several anyons.
Indeed, a sequence of anyons fused in a particular order provides a set of possible in-
between fusion outcomes. Another person that has exactly the same set of anyons and
decides to fuse them in a different order could obtain a different sequence of in-between
fusion outcomes. The F matrix can be employed to systematically translate between these
two different sets. Actually, any fusion ordering can be mapped to any other with a suffi-
cient number of F move applications, like the ones depicted in Figure 4.2. Choosing the
order in which anyons are fused can be viewed as a choice of basis and the F matrix as a
transformation between different bases.

4.1.3 Anyonic Hilbert space

The Hilbert space of anyons is rather unusual. It is the space of states that corresponds
to the fusion process. We assign a distinct state to the time evolution of two anyons that
fuse to a certain outcome. In this way, states that correspond to different fusion outcomes
are automatically orthogonal to each other as we can always distinguish between different
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anyons. Let us denote the fusion Hilbert space of n anyons byM(n). Since Abelian anyons
have only a single fusion outcome, their fusion Hilbert space is trivial

dim(MAbelian) = 1. (4.6)

Suppose we consider two non-Abelian anyons a and b with the fusion rule a×b =
∑

c Nc
abc,

as in (4.2). In this case we assign the state

| a, b→ c; µ〉 (4.7)

to each possible fusion outcome. The index µ = 1, ...,Nc
ab parameterises the possible mul-

tiplicity of a certain fusion channel. To simplify notation we restrict ourselves in the fol-
lowing to the case where Nc

ab ≤ 1, so we can drop the index µ.
Let us have a closer look at a variety of fusion processes and their corresponding dimen-

sionality. The hypothetical evolution of a single non-trivial anyon going through fusion
with the vacuum and coming out as the vacuum is not permitted. This allows us to assign
the zero-dimensional Hilbert space to this evolution

dim(M(1)) = 0. (4.8)

When there is an initial and a final anyon, that due to anyonic charge conservation are
necessarily equal to each other, then the Hilbert space is one-dimensional

dim(M(2)) = 1. (4.9)

The Hilbert space of two initial non-Abelian anyons a and b with a fusion outcome c with
multiplicity Nc

ab gives rise to equally many states. The Hilbert space of three anyons related
by the fusion process is therefore given by

dim(M(3)) = Nc
ab. (4.10)

Consider now three initial anyons a, b and c that fuse to d. To evaluate the dimension
of their Hilbert space we need to count all possible in-between outcomes from pairwise
fusions. To be explicit we can initially fuse a and b and then fuse the outcome i of this
fusion with c in order to obtain d, as illustrated in Figure 4.3(a). For each i we might write
the state of this fusion process as

| i〉 = | a, b→ i〉 | i, c→ d〉 , (4.11)

where the tensor product symbol between the states of the two different fusion processes
has been omitted. This state can be written as | i〉 when the fixed anyons a, b, c and d are
implicitly assumed. If there is more than one possible outcome then the corresponding
states, | i〉, can comprise a basis of a higher dimensional Hilbert space denoted asM(4). Al-
ternatively, one could consider fusing b and c and their outcome j with a to obtain d with
corresponding basis states | b, c→ j〉 | j, a→ d〉. Changing between these two different fu-
sion states corresponds to the F move we described in Figure 4.2. The change of basis in
the Hilbert spaceM(4) of the four anyons is given by

| a, b→ i〉 | i, c→ d〉 =
∑

j

(Fd
abc)i

j | b, c→ j〉 | a, j→ d〉 (4.12)
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| e1e2, ..., en−3〉 of n ordered anyons ai with i = 1, ..., n.

or simply | i〉 =
∑

j(Fd
abc)i

j | j〉. If we consider more initial anyons we have to specify how
we order their fusions if we want to uniquely determine the basis states of their Hilbert
spaceM(n). For the ordering of n anyons ai with i = 1, ..., n, depicted in Figure 4.3(b), we
have the states

| e〉 = | e1, e2, ..., en−3〉 = | a1, a2 → e1〉 | e1, a3 → e2〉 ... | en−3, an−1 → an〉 . (4.13)

If we decide to fuse the anyons in a different order then we could employ the F moves to
transform the | e〉 states into the basis states of the new fusion order. By a simple counting
argument we can see that the number of different fusion possibilities is given by

dim(M(n)) =
∑

e1...en−3

Ne1
a1a2

...Nan
en−3an−1

. (4.14)

A more intuitive expression for dim(M(n)) can be given in terms of the quantum dimen-
sion di of anyon i. Quantum dimension is a fancy name that refers to the dimension of the
Hilbert space associated to an anyon. Starting from the fusion rules a × b =

∑
c Nc

abc one
can define the quantum dimension to satisfy the following relation

dadb =
∑

c

Nc
abdc. (4.15)

Abelian anyons, such as the vacuum, always have di = 1, while non-Abelian anyons nec-
essarily have di > 1. It is worth noting that the quantum dimension does not need to be an
integer. Consider now the set of n anyons, shown in Figure 4.3(b), where all ai are identi-
cal to a. The quantum dimension characterises how fast the dimension of the Hilbert space
grows when one additional a particle is inserted, i.e.

dim(M(n)) ∝ dn
a , (4.16)

where we assume that n is large (see Exercise 4.2). The dimension of M(n) is always an
integer as it enumerates different fusion outcomes, while dn

a does not need to be an integer.
Relation (4.16) therefore gives the proper behaviour for large n. The important fact is that
the fusion Hilbert space increases exponentially fast with the number of anyons n implying
a form of tensor product structure. Nevertheless, dim(M(n)) is not necessarily the product
of the dimensions of particular subsystems. Finally, we define the total quantum dimension
of a topological model by

D =

√∑
i

d2
i , (4.17)
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= Rab
ctFig. 4.4 The clockwise exchange of anyons a and b with fusion outcome c gives the phase Rc

ab.

where the summation runs through all the anyonic species of the model. The quantity D
can be defined for any topological model.

Before moving further let us interpret these rather obscure fusion states in terms of more
conventional means. After all, when the topological model is physically realised, the fusion
states have to correspond to certain quantum states of the constituent particles. We expect
that the states of the microscopic system which correspond to different fusion outcomes
are pairwise orthogonal. On the other hand, microscopic states that produce the same fu-
sion outcome are considered as equivalent. This is manifested as an indistinguishability
of the microscopic states in terms of their topological properties. The information of the
fusion outcome is not a local property as it is encoded in the system in a non-local way.
For example, consider two quasiparticles a and b prepared in a given fusion channel c.
Their fusion state | a, b→ c〉 corresponds to a concrete state of the underlying microscopic
system. When this state evolves adiabatically in order to fuse anyonic quasiparticles, the
state that corresponds to quasiparticle c results. All the states of the constituent particles
along this time evolution that describe different positions of the a and b quasiparticles are
equivalent since they correspond to the same fusion state. As a conclusion the fusion states
correspond, in general, to a whole family of states of the microscopic system.

4.1.4 Exchange properties of anyons

Statistics is manifested in the evolution of the wave function of two particles when they
are exchanged. In two spacial dimensions particles are allowed to exhibit any arbitrary
statistical evolution. To systematically assign statistical evolutions consider the effect of
exchanging two anyons, a and b, when their fusion channel is fixed, i.e. a × b → c, as
shown in Figure 4.4. This exchange can be viewed as a half twist of the c particle. Hence,
the exchange evolution Rc

ab of the fusion state | a, b→ c〉 should simply be a phase factor
as it corresponds to the rotation of a single particle. We can build a matrix Rab by ordering
all the phases for all possible fusion outcomes c of a and b on the diagonal of a matrix Rab.
The exchange matrix will be referred to in the following as the R matrix.

The superposition of multiple fusion outcomes in the braiding process can result in an
exchange operator B, which is a non-diagonal unitary matrix. To demonstrate this, we
consider the effect of exchanging a and b when these two anyons do not have a direct fusion
channel. Then the F moves can be employed to change their fusion order until the exchange
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itFig. 4.5 If anyons a and b do not have a direct fusion channel then their exchange can be defined in
terms of the F moves that rearrange the order of fusion. Here we depict such a series of
operations that gives rise to the braiding unitary B = F−1RF.

is acting on anyons with a certain fusion channel. In Figure 4.5 we diagrammatically derive
the relation

Bab = Fd
acb
−1

RabFd
acb. (4.18)

The braiding matrix Bab implicitly depends on anyons c and d. Notably, this unitary matrix
can be non-diagonal due to the F transformation. The B unitary corresponds to irreducible
representations of the braid group. The general properties of the braid group are analysed
in Chapter 8.

4.1.5 Pentagon and hexagon identities

Arbitrary as they might seem the F and R matrices that accompany a given set of fusion
rules have to satisfy simple consistency equations. These conditions dramatically restrict
the multiplicity of possible models, which satisfy the same fusion rules, to finitely many.
They are called pentagon and hexagon identities [67] due to their geometric interpretation
and they are the subject of study of topological quantum field theory [68].

Let us consider Figure 4.6 where the fusion process of four anyons, 1, 2, 3 and 4, is
depicted. Consider the leftmost diagram with a certain fusion ordering. We assign specific
in-between fusion outcomes, a and b, that has a fixed total fusion channel, 5. By employing
the two F moves depicted in the upper path it is possible to completely reverse the fusion
ordering and transform the fusion diagram to the rightmost one. However, it is also possi-
ble to connect these two diagrams by following a completely different path that includes
three F moves. This is depicted in Figure 4.6 as the lower path. It is an axiom that these
two processes should be equivalent. Stated differently, if there is a unique interpretation of
fusion states by the fusion diagrams then distinct transformations with F moves that con-
nect the leftmost and rightmost diagrams ought to be identical. Imposing this axiom gives
rise to the pentagon identity

(F5
12c)d

a(F5
a34)c

b =
∑

e

(Fd
234)c

e(F5
1e4)d

b(Fb
123)e

a. (4.19)

This equation provides a relation between the matrix elements of all possible F matrices
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ctFig. 4.7 The hexagon identity relates two distinct fusion processes of three anyons with a fixed total
fusion outcome by a sequence of fusion rearrangements and braiding operations.

of the model. The e summation is over all possible particles types that we can have in the
fusion diagrams shown in Figure 4.6.

An independent set of identities can be obtained by employing in addition the braiding
processes. Consider three anyons, 1, 2 and 3 that fuse to 4 through the fusion channel a,
as shown in the leftmost diagram of Figure 4.7. By alternating applications of F and R
moves it is possible to interchange the fusion order of the initial anyons in two distinct
ways. Demanding again that these two distinct processes correspond to the same overall
procedure gives rise to the hexagon identity∑

b

(F4
231)c

bR4
1b(F4

123)b
a = Rc

13(F4
213)c

aRa
12. (4.20)

When instead counterclockwise exchange operations R−1 are employed, an equivalent set
of equations is obtained [69].

Finally note that the pentagon and hexagon identities become trivial for Abelian mod-
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ctFig. 4.8 Interpreting anyons with ribbons facilitates accounting for twists and exchanges. Clockwise
exchanging k times anyons a and b can be continuously deformed to k clockwise π rotations for
anyon c and k counterclockwise π rotations for both anyons a and b. These two configurations
are topologically equivalent.

els, whose statistical phase can be arbitrary. Consistent non-Abelian anyonic models are
completely determined by the pentagon and hexagon identities without the need of further
conditions [70]. For a given number of anyon types with fixed fusion rules the solutions
of these two polynomial equations give a discrete possibly empty set of F and R matrices.
This resembles the discrete character of the solutions of quadratic equations. The discrete-
ness in the F and R solutions, known as the Ocneanu rigidity [71] is in agreement with
the discrete nature of topological models. Hence, topological models are not continuously
connected with each other, which provides much of their resilience against erroneous per-
turbations.

4.1.6 Spin and statistics

It is well known that bosons have integer spin, e.g. 0, and fermions half-integer spin, e.g.
1/2. When a spin 0 particle is rotated around itself its wave function is not changed, while,
when a spin 1/2 particle is rotated by 2π then the fermionic wave function acquires a
minus sign [72]. This is in agreement with the exchange statistics of these particles. The
tight relation between spin and statistics [73] also governs the behaviour of anyons. As the
statistics of anyons is neither bosonic nor fermionic, the spin of anyons can take any value
different from 0 or 1/2. Up to now the worldlines of anyons allowed us to keep track of
their braiding history. To keep track of their self-rotations we now extend the worldlines to
“worldribbons”. This allows us to establish the connection between spin and statistics.

Consider two anyons a and b with a given fusion channel c that are exchanged k times in
a counterclockwise fashion. Particle exchanges cannot change the fusion outcome of a and
b, but they can generate phase factors, Rc

ab, as we have seen in the previous. Suppose that
the quantum mechanical evolution, associated with the exchange process, remains invariant
under continuous deformations of the worldribbons, due to its topological character. Then
it is possible to continuously transform the k clockwise exchanges of a and b to k twists of
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one of the anyons around itself by 2π. This equivalence can be nicely verified with a belt.

the ribbons by an angle π, clockwise for ribbon c and counterclockwise for ribbons a and
b. This is depicted in Figure 4.8. The spin-statistics theorem dictates that the amplitudes of
these two processes have to be equal [73]. Let us assign spins, sa, sb and sc to anyons a,
b and c, respectively. Clockwise rotating a spin s particle by angle φ generates the phase
factor e−iφs in front of its wave function. As the amplitude of the exchange and the twisting
processes have to be the same the twists of the particles have to generate the appropriate
spin phase factors to compensate for the statistical ones. Applying this to the process of
Figure 4.8 we obtain the spin-statistics theorem given in the form [74]

(Rc
ab)k = eiπksa eiπksb e−iπksc . (4.21)

As an example we consider the k = 1 case. We restrict ourselves to anyons a = q and
b = q̄ that are particles and antiparticles of each other with the vacuum being their fusion
channel, c = 1. The corresponding spins are given by s = sq = sq̄ and s1 = 0. As these
anyons can be generated from the vacuum and fused to it, their evolution corresponds to
a worldribbon that forms a closed loop. In Figure 4.9 we show the schematic equivalence
between the process of exchanging q and q̄ and rotating only one of them by 2π. The first
evolution gives rise to a statistical phase R1

qq̄ and the second to a spin phase ei2πs, where s
is the spin of the q and q̄ anyons. Hence,

R1
qq̄ = ei2πs, (4.22)

which is exactly the spin-statistics relation. As Abelian anyons can have arbitrary values
of statistic phases eiϕ their corresponding spin s can take arbitrary values as well.

4.2 Anyonic quantum computation

In the previous sections we identified the Hilbert space of non-Abelian anyons and analysed
the manipulations that lead to unitary evolutions of this space. We are now ready to see how
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Table 4.1 Anyonic quantum computation

Quantum computation Anyonic manipulation

State initialisation → Create and arrange anyons
Quantum gates → Braid anyons

State measurement → Detect anyonic charge

to employ anyons to perform quantum computation. For that we need to implement several
operations on anyons to eventually achieve the desired quantum state manipulations. Our
steps follow the circuit quantum computation model. This model requires initialisation
of the physical system in a well determined quantum state, application of quantum gates
and measurement of the final state. To implement these steps we seek to initially create
and arrange anyons, braid them together and eventually determine their anyonic charge, as
summarised in Table 4.1.

4.2.1 Anyonic setting

A possible configuration and manipulation of anyons that can result in quantum computa-
tion is shown in Figure 4.10. We start with a set of anyons that are prepared in a well defined
fusion state. For example, this is possible by creating pairs of non-Abelian anyons a and ā
from the vacuum. The fusion state of these anyons is well known. It belongs to a Hilbert
space that increases exponentially with the number, n, of anyonic pairs, dim(M(n)) ∝ dn

a .
As da is not always an integer the fusion space M(n) does not necessarily admit a tensor
product structure. Nevertheless, this Hilbert space always contains a subspace with qubit
tensor product structure in which quantum information can be encoded in the usual way.
Its dimension increases exponentially as a function of n. Hence, non-Abelian anyons are
an efficient medium for storing quantum information.

Having identified the logical encoding space we now consider the gates that evolve it.
Logical gates can be performed by braiding the anyons, thus evolving their fusion state by
the R matrix, as shown in Figure 4.10. This operation does not affect the type of anyons
neither their local degrees of freedom but can have a non-trivial effect on the states of the
fusion space M, as we have shown in Section 4.1.4. In combination with the F matrices
one can evolve the encoded information in a non-trivial way. Ideally, we want to be able
to perform any arbitrary algorithm out of braiding anyons. Assume that the F and the R
matrices span a dense set of unitaries acting on the qubits, in the sense described in Section
3.2.1. Then the corresponding anyonic model supports universal quantum computation
[60, 61]. For these universal anyonic models, one can construct a universal set of quantum
gates out of the braiding operations. For these models it has been shown [75, 76] that by
weaving a single anyon among many static ones it is possible to perform a universal set
of gates between arbitrary qubits. Then one can employ these gates to implement quantum
computation following standard quantum algorithms.
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At the end of the computation we want to measure the processed information, which is
encoded in the final fusion state of the anyons. This can be achieved by fusing the anyons in
a series and retrieving the fusion outcomes ei. The example given in Figure 4.10 illustrates
this process at the end of the anyonic evolution. As the fusion state of the anyons can be a
superposition of many different basis states | e1, e2, ...〉 the measurement of the final fusion
state provides, in general, a probability distribution. This step constitutes the final read out
of the computation. The braiding algorithm can be adapted to different choices of initial
states of anyons and to different fusion procedures.

4.2.2 Stability of anyonic computation

Let us now have a closer look at the stability features of topological quantum computation.
Initially, note that the fusion space evolution induced by anyon braiding does not depend
on the details of the paths spanned by the anyons, only on their topology. The experimental
control of the system inherits this resilient characteristic. Hence, an experimentalist imple-
menting topological quantum computation does not need to be very careful in spanning
these paths as long as their global characteristics are realised.

If anyons were elementary particles then they would be robust up to high energy scales.
Hence, information encoded with the anyons would be resilient and we could straightfor-
wardly perform error-free quantum computation. In reality anyons are realised as effective
particles of topological models. Thus, we need to consider the stability of these models
against environmental errors. What protects the logical information encoded in these sys-
tems is the non-local encoding and the presence of a finite energy gap. Indeed, when anyons
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are kept far apart the information encoded in the fusion space is not accessible by local op-
erations. Hence, environmental errors, acting as local perturbations to the Hamiltonian can-
not alter the fusion states [77]. This is the fault-tolerant characteristic of anyons that makes
them a favourable medium for performing quantum computation. Nevertheless, probabilis-
tic errors on the system, e.g. due to a finite temperature, do affect the encoded space [78].
It is an important open problem to find a method that efficiently overcomes probabilistic
errors with a two-dimensional system. First important steps are taken in [79, 80].

Finally, we should emphasise that implementing universal computation solely by topo-
logical means is not the only available option. One might envision combining topological
procedures with other known computational methods to optimise their resilience and effi-
ciency. For example, quantum information can be stored in the fusion channels of anyons
and thus become protected from errors compared to other quantum memory schemes. Sub-
sequently, one might like to avoid transporting anyons in order to perform logical gates and
instead perform them in a dynamical, non-topological way. A scheme has already been pro-
posed that employs measurements of anyons in order to evolve their state, similarly to one
way quantum computation [81]. Moreover, for some models, the braiding and recombining
operations might not be enough to span a universal set of gates while they still provide an
efficient anyonic quantum memory. Supplementing these operations with non-topological
evolutions can lead to universal quantum computational models [82, 83].

4.3 Example I: Ising anyons

To illustrate the properties of anyonic models we now consider the example of the Ising
anyons. The importance of this non-Abelian anyonic model stems from the fact that it is
the most promising model for experimental realisation. As we shall see in Chapter 6, Ising
anyons describe the statistical properties of Majorana fermions. The latter are currently
under intense experimental investigation in the arena of Fractional Quantum Hall samples
[85], topological insulators [86] and p-wave superconductors [87].

4.3.1 The model and its properties

The particle types of the Ising anyon model are the vacuum, 1, the non-Abelian anyon, σ,
and the fermion, ψ. In this model the fusion rules are given by

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1, (4.23)

with 1 fusing trivially with the rest of the particles, i.e. σ × 1 = σ and ψ × 1 = ψ. The first
fusion rule of (4.23) signifies that if we bring two σ anyons together they might annihilate,
i.e. σ can be its own antiparticle, or they might give rise to the fermion ψ. Hence, the
fusion of two σ’s has two possible fusion outcomes represented by the states |σ,σ→ 1〉
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tFig. 4.11 Worldlines of Ising anyons, σ, where time is running downwards. (a) Two pairs of σ’s are
generated from the vacuum 1. Then an anyon from one pair is circulated around an anyon from
the other pair. Finally, the anyons are pairwise fused producing fermionic outcomes. This signals
a non-trivial evolution of the fusion states due to braiding. (b) A similar evolution, where two
pairs of σ are created from a fermion ψ and the vacuum 1, respectively. The braiding causes the
teleportation of the fermion from one pair to the other.

and |σ,σ→ ψ〉. The second rule indicates that fusing a ψ with a σ gives back a σ. In a
sense, this rule states that a ψ can be absorbed by a σ without changing its anyonic charge.
The third fusion rule states that when two fermions are brought together they are fused
to the vacuum. Only the parity of the total number of fermions can be detected, since the
composite of two ψ’s is condensed to the vacuum.

Let us now give the explicit forms of the F and R matrices for the Ising model. We
postpone their derivation to the next subsection. The F matrix is given by

Fσ
σσσ =

1
√

2

(
1 1
1 −1

)
(4.24)

in the |σ,σ→ 1〉 and |σ,σ→ ψ〉 basis. It corresponds to the rearrangement of the fusion
order of three σ anyons when their total fusion channel is a σ. The F matrix dictates that
the in-between fusion outcomes, being the vacuum or the fermion, can be non-trivially
transformed by changing the fusion order of the anyons. In the case of two σ anyons the
components of the R matrix are R1

σσ = e−iπ/8 and Rψ
σσ = ei3π/8 giving the matrix

Rσσ = e−iπ/8
(

1 0
0 i

)
. (4.25)

This implies that a ψ fusion channel acquires an additional π/2 phase compared to the
vacuum during a π rotation due to the spin 1/2 nature of the fermion.

Let us now consider some implications of the braiding and fusion properties of the Ising
anyons. Assume that one creates two pairs of anyons (σ,σ) from the vacuum, as illustrated
in Figure 4.11(a). The state of the two pairs is then given by |σ,σ→ 1〉 |σ,σ→ 1〉. The
braiding evolution is described by the two-dimensional matrix

B = FR2F−1 = e−iπ/4
(

0 1
1 0

)
(4.26)
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1tFig. 4.12 Two initial configurations for the pentagon identity.

that rotates the fusion states of each pair from |σ,σ→ 1〉 to |σ,σ→ ψ〉 up to an overall
phase factor. The braiding, hence, changes the internal state of the anyons in a non-trivial
way. The resulting ψ’s can be further fused to the vacuum that we had started with, without
violating the conservation of the total anyonic charge. Similarly, Figure 4.11(b) shows the
generation of one pair of Ising anyons from a fermion and another one from the vacuum.
The braiding process causes the fermion to be teleported from one pair to the other even
though the anyons have not been in contact with each other at any time.

Let us now describe how one could employ Ising anyons for topological quantum com-
putation. First, we encode a qubit in a set of four σ anyons. Logical states are encoded
in the different in-between fusion outcomes of four anyons, i.e. | 0L〉 = |σ,σ→ 1〉 and
| 1L〉 = |σ,σ→ ψ〉. To encode n qubits we can employ 4n anyons. Logical operations
between the qubits can be performed by braiding Ising anyons and changing their fusion
order. As we have seen, this results in the F and R matrices given in (4.24) and (4.25),
respectively. It is known that these two unitary evolutions cannot support universal quan-
tum computation as F and R do not span the whole SU(2) group. They are restricted to the
Clifford subgroup of SU(2). This model can be made universal by the addition of a phase
gate which can be implemented by dynamical operations [82, 83].

4.3.2 F and R matrices

We now analytically calculate the exact form of the F and R matrices for the Ising model.
The starting point is the set of particles 1, σ and ψ and their fusion rules (4.23). Having a
closer look at these rules we find that the only non-zero coefficients are N1

σσ = 1, Nψ
σσ = 1,

Nσ
1σ = 1 and Nσ

ψσ = 1. By substituting a1 = a2 = a3 = a4 = σ into equation (4.14) and
having the summation running over e1 = 1, ψ we find that dim(M(4)) = 2, which encodes
one qubit. Moreover, the quantum dimension of the vacuum is d1 = 1, and ψ has quantum
dimension dψ = 1 as well. So for σ we have d2

σ = d1 + dψ, which implies dσ =
√

2. Thus,
the total quantum dimension of the Ising model isD = 2.

Next we solve the pentagon and hexagon identities. From Figure 4.2 we see that F4
123

is a one-dimensional matrix, except when the anyons 1, 2, 3 and 4 are all σ. Then i and j
run over the variables 1 and ψ, making Fσ

σσσ is a 2 × 2 matrix. All the one-dimensional F
elements can take arbitrary complex phase values. This corresponds to a gauge degree of
freedom that we conveniently fix to be +1 or −1.
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1tFig. 4.13 Two trivial F moves. For the (a) configuration we choose (F1
σσ1)σ1 = 1. The (b) configuration

corresponds to an impossible fusion process so (F1
σσψ)σ1 = 0.

The pentagon identity (4.19) reads

(F5
12c)d

a(F f
a34)c

b =
∑

e

(Fd
234)c

e(F f
1e4)d

b(Fb
123)e

a. (4.27)

Let us initially take the particles 1, 2, 3 and 4 to be σ anyons and 5 to be the vacuum, as
shown in Figure 4.12(a). Then from Figure 4.6 we see that b and d need to be σ, while a
and c of (4.27) can be either 1 or ψ. Suppose a = 1 and c = 1. Then the pentagon identity
becomes

(F1
σσ1)σ1 (F1

1σσ)1
σ =

∑
e=1,ψ

(Fσ
σσσ)1

e(F1
σeσ)σσ(Fσ

σσσ)e
1. (4.28)

The F move (F1
σσ1)σ1 corresponds to a trivial rearranging of anyons, as shown in Figure

4.13(a). So we set (F1
σσ1)σ1 = 1. Hence, we obtain the equation

1 = (Fσ
σσσ)1

1
2

+ (Fσ
σσσ)1

ψ(Fσ
σσσ)ψ1 . (4.29)

Let us now take a = 1 and c = ψ. Then the pentagon identity becomes

(F1
σσψ)σ1 (F1

1σσ)ψσ =
∑

e=1,ψ

(Fσ
σσσ)ψe (F1

σeσ)σσ(Fσ
σσσ)e

1, (4.30)

which implies

(Fσ
σσσ)ψψ = −(Fσ

σσσ)1
1. (4.31)

Above we have used the condition (F1
σσψ)σ1 = 0 as the corresponding process, shown in

Figure 4.13(b), is forbidden. When a = ψ and c = 1 we obtain the same condition as (4.29).
Finally, when a = c = ψ we have

1 = (Fσ
σσσ)ψ1 (Fσ

σσσ)1
ψ + (Fσ

σσσ)ψψ
2
. (4.32)

Let us now take particle 1 to be ψ and 2, 3, 4 and 5 to be σ anyons, as shown in Figure
4.12(b). The only possibility is to have a = d = σ, while b and c can be either 1 or ψ. The
pentagon equation, for b = c = 1, now becomes

(Fσ
ψσ1)σσ(Fσ

σσσ)1
1 =

∑
e=1,ψ

(Fσ
σσσ)1

e(Fσ
ψeσ)σ1 (F1

ψσσ)e
σ, (4.33)

which implies

(Fσ
σσσ)1

1 = (Fσ
σσσ)1

ψ. (4.34)
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Here we used (Fσ

ψσ1)σσ = 1. Finally, for b = 1 and c = ψ we obtain

(Fσ
ψσψ)σσ(Fσ

σσσ)ψ1 =
∑

e=1,ψ

(Fσ
σσσ)ψe (Fσ

ψeσ)σ1 (F1
ψσσ)e

σ, (4.35)

which implies

(Fσ
σσσ)ψ1 = (Fσ

σσσ)ψψ. (4.36)

To derive this we have set (Fσ
ψσψ)σσ = −1 as setting it to +1 would have given a non-unitary

matrix for Fσ
σσσ. Equations (4.29), (4.31), (4.32), (4.34), (4.36) can now be solved to find

that the matrix Fσ
σσσ has the following elements

(Fσ
σσσ)ψψ = −(Fσ

σσσ)1
1, (Fσ

σσσ)ψ1 = (Fσ
σσσ)ψψ,

(Fσ
σσσ)1

1 = (Fσ
σσσ)1

ψ, (Fσ
σσσ)ψ1 = ±

1
√

2
. (4.37)

Reconstructing the F matrix from its components we obtain

Fσ
σσσ = ±

1
√

2

(
1 1
1 −1

)
. (4.38)

The choice of ± sign is called the Frobenius-Schur indicator [157]. Hence, the pentagon
equation determines the F matrix.

Let us now turn to the hexagon identity (4.20) given by∑
b

(F4
231)c

bR4
1b(F4

123)b
a = Rc

13(F4
213)c

aRa
12. (4.39)

In particular, we take particles 1, 2, 3 and 4 to be all σ anyons and consider the four
possibilities with a and c being either 1 or ψ. One can easily see that for a = c = 1 we have∑

b=1,ψ

(Fσ
σσσ)1

bRσ
σb(Fσ

σσσ)b
1 = R1

σσ(Fσ
σσσ)1

1R1
σσ, (4.40)

which implies
1
2

(Rσ
σ1 + Rσ

σψ) =
1
√

2
R1
σσ

2
. (4.41)

Similarly, for a = 1 and c = ψ we obtain

1
2

(Rσ
σ1 − Rσ

σψ) =
1
√

2
Rψ
σσR1

σσ, (4.42)

for a = ψ and c = 1 we obtain

1
2

(Rσ
σ1 − Rσ

σψ) =
1
√

2
R1
σσRψ

σσ, (4.43)

and finally, for a = c = ψ we obtain

1
2

(Rσ
σ1 + Rσ

σψ) = −
1
√

2
Rψ
σσ

2
. (4.44)

Combining (4.41) and (4.44) hence implies

R1
σσ = ±iRψ

σσ, (4.45)
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# " 1LtFig. 4.14 The fusion process for Fibonacci anyons, τ. (a) A series of τ anyons are fused together ordered

from left to right. The first two τ anyons are fused and then their outcome is fused with the next τ
anyon and so on. (b) Four Fibonacci anyons in state τ created from the vacuum can be used to
encode a single logical qubit.

while adding (4.42) and (4.44) together gives

Rψ
σσ = ±e−

3π
8 i. (4.46)

Similarly, we find that for both choices of sign we have the same solution Rσ
σ1 = 1 and

Rσ
σψ = i. Note that there is a discrete multiplicity of solutions in equations (4.38), (4.45) and

(4.46) corresponding to the combinations of different signs. Hence, the hexagon equation
determines the R matrix when the F matrix is known.

4.4 Example II: Fibonacci anyons

In this final section we present probably the most celebrated non-Abelian anyonic model:
the Fibonacci anyons. Its popularity is not only due to its simplicity and richness in struc-
ture, which supports universal quantum computation, but also to its connection to the Fi-
bonacci series. In this model there are only two different types of anyons, the vacuum, 1,
and the non-Abelian anyon, τ. The only non-trivial fusion rule is

τ × τ = 1 + τ. (4.47)

The quantum dimension of τ can be obtained from d2
τ = d1 + dτ giving dτ = φ, where

φ = (1 +
√

5)/2 is the golden mean. This number has been used extensively by artists, such
as the ancient Greek sculptor Phidias or Leonardo Da Vinci in geometrical representations
of nature as it describes the ratio that is aesthetically most appealing.

It is interesting to look in detail at all the possible in-between outcomes when fusing n
anyons of type τ, as shown in Figure 4.14(a). There we initially fuse the first two anyons,
then their outcome is fused with the third τ anyon and so on. To each step i we assign an
index ei that indicates the outcome of the fusion at that step being either 1 or τ. The states
| e1, e2, ..., en−3〉 belong to the fusion Hilbert space of the anyons, M(n). In principle there
are 2n−3 possible combinations of ei’s, but not all of them are allowed fusion outcomes. Let
us analyse how many statesM(n) can have by counting the distinct ways in which one can
fuse n−1 anyons of type τ to finally yield a τ. For n = 1 we deal with the impossible process
where the vacuum turns into a τ anyon, so dim(M(1)) = 0. The n = 2 case corresponds
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to a τ as an input and an output going through a trivial process. So dim(M(2)) = 1. At the
next fusing step, the possible outcomes are 1 or τ, giving dim(M(3)) = 1. When we fuse
the outcome with the next anyon then 1× τ = τ and τ× τ = 1 + τ, resulting in two possible
τ’s coming from two different processes and a single vacuum outcome. So dim(M(4)) = 2.
This signifies that four Fibonacci anyons are needed to encode a qubit. Taking all possible
outcomes and fusing them with the next anyon gives a space which is three-dimensional,
dim(M(5)) = 3. Continuing this process one soon notices that the dimension of the fusion
space dim(M(n)) when n anyons of type τ are fused actually reproduces the Fibonacci
series,

0, 1, 1, 2, 3, 5, 8, 13, .... (4.48)

It is known from number theory that this dimension is approximately given by the follow-
ing formula

dim(M(n)) ∝ φn,

in agreement with relation (4.16).
The Fibonacci anyon model can indeed realise universal quantum computation. Much

like the Ising model case, the encoding of a qubit can be visualised by employing four
τ anyons, as in Figure 4.14(b). There are two distinguishable ways the anyons can be
fused that encode the qubit states | 0L〉 = | τ, τ→ 1〉 and | 1L〉 = | τ, τ→ τ〉. To determine
the possible quantum gates one needs to evaluate the F and the R matrices. From the
fusion rules of Fibonacci anyons and the pentagon identity one finds the non-zero values
(Fτ

ττ1)ττ = (Fτ
1ττ)

τ
τ = (F1

τττ)
τ
τ = (Fτ

τ1τ)
τ
τ = (F1

111)1
1 = 1 and

Fτ
τττ =

 1
φ

1
√
φ

1
√
φ
− 1
φ

 . (4.49)

These solutions are unique up to a choice of gauge. Inserting these values into the hexagon
identity, one obtains the following R matrix describing the exchange of two anyons

Rττ =

(
e4πi/5 0

0 −e2πi/5

)
. (4.50)

It can be shown that the braiding unitaries b1 = Rττ and b2 = Fτ
τττRττ(Fτ

τττ)
−1 acting

in the logical space | 0L〉 and | 1L〉 are dense in SU(2) in the sense that they can repro-
duce any element of SU(2) with accuracy ε in a number of operations that scales like
O(poly(log(1/ε)) [88]. For example, an arbitrary one qubit gate can be performed as fol-
lows. Begin from the vacuum and create four anyons labelled τ1, τ2, τ3 and τ4. Braiding
the first and second anyons implements b1 and braiding the second and third anyons imple-
ments b2. A measurement of the outcome upon fusing τ1 and τ2 projects onto | 0L〉 or | 1L〉.
Similarly, by performing braiding of 8 anyons and keeping in mind that dim(M(8)) = 13
one obtains a dense subset of SU(13). Since SU(4)⊂SU(13), we can implement any two-
qubit gate, e.g. the CNOT gate, with arbitrary accuracy. This means, the Fibonacci anyon
model allows for universal computation on n logical qubits using 4n physical anyons [89].
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Summary

In this chapter we introduced the anyonic models in a systematic way and we derived con-
sistency equations between their properties. For example, the spin-statistics theorem relates
the spin of anyons with their braiding behaviour. Moreover, the pentagon and hexagon
identities can be established by simple considerations of anyonic worldline diagrams.
These identities establish the fusion and braiding properties of non-Abelian anyons by
determining their F and R matrices.

To employ anyons for quantum computation we first identify which part of the fusion
Hilbert space is ideal for encoding information. The F and R matrices are then identified
as logical gate primitives that non-trivially evolved the fusion states. If the F and R unitary
matrices can efficiently span the whole encoding space then the corresponding anyonic
model can perform universal quantum computation.

As concrete examples we investigated the Ising and the Fibonacci models. The interest
in the Ising anyons is due to their possible physical realisation with near future technology.
Nevertheless, this model cannot, per se, support universal quantum computation. Supple-
menting it with simple dynamical phase rotations can overcome this caveat. On the other
hand, the Fibonacci model is universal. Successive applications of its F and R matrices can
rotate any state encoded in the fusion space to any other with well controlled accuracy.

Exercises

4.1 For ā denoting the antiparticle of the a anyon demonstrate the following properties
of Nc

ab: Nc
a1 = δac, N1

ab = δbā, Nc
ab = Nc

ba = N ā
bc̄ = N c̄

āb̄
and

∑
e Ne

abNd
ec =

∑
f Nd

a f N f
bc.

4.2 Show that starting from the definition of the quantum dimension (4.15) one can de-
rive the asymptotic relation (4.16). [Hint: Consider the matrix Nc with non-negative
elements (Nc)ab = Nc

ab and decompose it into eigenstates and eigenvalues [88, 90].]
4.3 Starting from pairs of Ising anyons created from the vacuum can we generate an

entangled state? [Hint: see Reference [91].]
4.4 Show that the F and R matrices of the Fibonacci model given in (4.49) and (4.50)

satisfy the pentagon and hexagon identities.
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5 Quantum double models

The birth of topological quantum computation took place when Alexei Kitaev [16] made
the ingenious step of turning a quantum error correcting code into a many-body interact-
ing system. In particular, he defined a Hamiltonian whose eigenstates are also states of a
quantum error correcting code. Beyond the inherited error correcting characteristics, topo-
logical systems protect the encoded information with the presence of the Hamiltonian that
energetically penalises transformations between states. This opens the door for employing
a large variety of many-body effects to combat errors.

Storing or manipulating information with a real physical system is naturally subject to
errors. To obtain a reliable outcome from a computation we need to be certain that the
processed information remains resilient to errors at all times. To overcome errors we need
to detect and correct them. The error detection process is based on an active monitoring of
the system and the possibility of identifying errors without destroying the encoded infor-
mation. Error correction employs the error detection outcome and performs the appropriate
steps to correct it, thus reconstructing the original information.

Classical error correction uses redundancy to spread information in many copies so that
errors can be detected, for example by majority voting, and then corrected. Similarly, quan-
tum error correction aims to detect and correct errors of stored quantum information. Quan-
tum states cannot be cloned [92] so the repetition encoding cannot be employed. The prin-
ciple of quantum error correction is to encode information in a sophisticated way that gives
the ability to monitor and correct errors. More concretely, the encoding is performed non-
locally such that errors, assumed to act in a local way, can be identified and then corrected
without accessing the non-local information.

Examples of topological systems that correspond directly to quantum error correction
methods are the quantum double models. The Hamiltonian of these models has the encoded
states as ground states, such that errors appear as excitations. Ensuring that there is an
energy gap above the ground states any error, corresponding to an excited state, will be
energetically penalised. Beyond the energetic protection of information, anyonic statistics
is intriguingly linked to the error correcting encoding. The non-local characteristic in the
encoding of quantum error correction is responsible for the exotic statistics of anyons in the
quantum double models. As these models enjoy analytic tractability they are a favourable
medium to study topological quantum computation.
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5.1 Error correction

We start by introducing the main characteristics of quantum error correction. These charac-
teristics provide a useful perspective into the properties of topological systems even beyond
the quantum double models.

5.1.1 Quantum error correction codes

Quantum error correction is the algorithmic means we have to combat environmental and
control errors while performing quantum computation. Similarly to classical error correc-
tion it works on the principle of encoding information in a redundant way. The goal is to
perform complex encoding and decoding of information so that the effect of the environ-
ment can be neutralised. As we see below this is possible for particular types of errors.

Let us start with some definitions. Consider a Hilbert space H of a quantum system
spanned by n finite dimensional complex subsystemsV,

H = V ⊗ ... ⊗V. (5.1)

For simplicity we initially consider H to be a set of qubits, i.e. dim(V) = 2. The code
space C is a linear subspace ofH spanned by a subset of its basis states. We encode all the
logical information in the code C, while the rest of the Hilbert space is employed to shield
this information. Moreover, we define a general k-local operator O as an operator that acts
non-trivially on at most k neighbouring subsystems of H . In this case O is also known as
operator of length k. Let ΠC be the projector on C. That is, it acts on states inH and returns
their component in C. Consider now the action of the operator ΠCO on states in C for any
bk/2c-local operator, O, where bxc denotes the smallest integer that is larger or equal to x.
When applied to a state in H , it returns a state in C that might not be normalised. In this
case C is called a k-code if

ΠCOΠC ∝ ΠC. (5.2)

Condition (5.2) implies that any state in C can be retrieved after a bk/2c-local operator acts
on it simply by projecting it again on C. The proportionality symbol ∝ indicates that the
correct state is retrieved up to an overall normalisation. It has been shown that such a code
can effectively protect against errors that act on less than bk/2c qubits [93]. Such a code is
also called [[n, d, k]], where n is the total number of qubits and 2d is the dimension of the
k-code C. This code requires n physical qubits to encode d logical ones protected against
errors that are at most bk/2c-local.

As an example consider a set of orthogonal states | i〉 for i = 1, ..., 8 and operators Or that
act on them as

Or | i〉 = | (i + r) mod 8〉 . (5.3)
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tFig. 5.1 States | i〉 with i = 1, ..., 8 arranged on a circle. The operators Or for integer r transform these
states in a way that respects the periodicity of the circle. A logical qubit is encoded by | 0〉L = | 1〉
and | 1〉L = | 5〉. Error correction corresponds to bringing the state of the system to the closest
logical state. Hence, operator O1 acting on logical state | 0〉L or | 1〉L corresponds to a correctable
error unlike errors of the form O2, O3, O4, O5 and O6.

In other words we assume that Or acts in a periodic way on the states, as shown in Figure
5.1. We can encode the logical qubit states as | 0〉L = | 1〉 and | 1〉L = | 5〉. Assume that a
single error of the form Or acts on a qubit state. Our error detecting strategy is to measure
the state of the system. If it is different from the logical one then we error correct by
taking it to the nearest logical state. Then errors that act as operators O1 can be efficiently
corrected. Errors of the form O2 cannot be efficiently corrected as we cannot uniquely
deduce the initial logical state. Finally, errors O3, O4 and O5 will eventually cause a logical
error as the error correction procedure will change the logical state of the qubit. So the code
is [[3, 1, 2]] as it requires 23 states to encode a single qubit and it protects against 1-local
errors. The error detection and correction steps can be performed with conditional gates
that do not directly access the encoded information.

5.1.2 Stabiliser codes

Quantum error correcting codes are commonly expressed in the stabiliser formalism [94].
A stabiliser Tn is a set of Hermitian operators, Ti with i = 1, ..., n that commute with each
other, i.e.

[Ti,T j] = 0 for all i, j. (5.4)

A particular example of stabilisers can be constructed from the Pauli group, Pn, generated
under multiplication by the Pauli matrices σx, σy, σz and the identity 1 acting on n qubits.
As different Pauli operators acting on the same qubit anticommute, only a subset of the
Pauli group operators commute with each other. This subset can form a stabiliser set. The
Pauli operators are Hermitian and they square to the identity, so they have eigenvalues
±1. The Pauli group, Pn, admits a common set of 2n eigenstates uniquely identified by
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Table 5.1 Quantum error correction

Pn Pauli group acting on n qubits
Sn Maximal set of commuting Pn elements
S A subgroup of Sn

C Set of states |ψ〉 with Ti |ψ〉 = |ψ〉 for all Ti ∈ S (encoding states)
Z(S ) Maximal set of Pn elements that commute with S (logical operations)

the pattern of eigenvalues for all stabiliser operators. The stabilised space consists of all
eigenstates |Ψ〉 with particular eigenvalue +1 for all operators Ti, i.e.

Ti |Ψ〉 = |Ψ〉 for all i. (5.5)

One can define an error correcting code with the stabiliser formalism based on the Pauli
group Pn. For that consider a maximal commuting set of independent operators Sn that is
a subgroup of Pn. The group Sn has n elements that can all be simultaneously diagonalised
and have 2n independent eigenstates. Now let S be a subgroup of Sn. Then we can define
a stabiliser code C to be the set of states that are eigenstates of all elements of S with
eigenvalue +1 as it applies to the states |Ψ〉 in (5.5). The basis states of the code space can
be parameterised by their eigenvalues with respect to the rest of the elements in Sn that
do not belong to S . Logical information is stored in the code space C. Hence, if S has s
elements, it can encode d = n − s qubits, so

dim(C) = 2n−s. (5.6)

Storing quantum information in the code space is useful for probing occurred errors. The
stabiliser formalism describes errors with commuting operators so they can be measured
and dealt with independently. Suppose that an error operator, which does not commute
with S , acts on a code state. This will change the eigenvalue of the state for some of the
operators in S . As any state in C is an eigenstate of all operators in S with eigenvalue
+1 we can measure these operators without changing the computational state, i.e. without
reading out information. In this way we can measure whether an error occurred or not and
correct for it without interrupting the computation.

Let us now consider the centraliser Z(S ), which is the maximal set of operators that
commutes with S . Elements of Z(S ) do not move code states out of C. In other words, their
action on C gives states that are also eigenstates of the S operators with eigenvalues +1.
Hence, they perform transformations between code states. Such elements serve as encoded
logical operations. If on the other hand an error belongs to Z(S ), then it will be undetected
and will destroy the encoded information.

When we try to error correct a detected error then the composite operator of the error
and the error correction operation need to be an identity in order to bring back the state to
its original form. If this composite operator is a non-trivial element of Z(S ) it causes an
irreversible error. Which of the two cases takes place depends on the length of the error in
relation to the distance of the code. The distance k of the code C is therefore the minimal
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length among the elements of Z(S ) that do not belong in S . For an efficient encoding we
assume that the errors are less than bk/2c-local so that error correction procedures can be
found that return the state back to its original form [93]. Interestingly, these concepts take
a transparent geometrical interpretation when they are applied to topological systems.

5.2 Quantum double models

Quantum double models are particular lattice realisations of topological systems. They are
based on a finite group, G, that acts on spin states, defined on the links of the lattice. Based
on these groups, stabiliser Hamiltonians can be defined consistently that have analytically
tractable spectra. It can be shown that the ground states of these Hamiltonians behave like
error correcting codes. Anyons are associated with properties of the spin states around each
vertex or plaquette of the lattice. The fusion and braiding behaviour of the anyons depends
on the property of the employed group, G. For example, an Abelian group leads to Abelian
anyons and a non-Abelian group leads to to non-Abelian anyons. All the properties of the
anyons emerge from the mathematical structure of the quantum double, denoted as D(G).
In the following we present a simple example of quantum doubles, the Abelian toric code.

5.2.1 The toric code

The simplest quantum double model is the toric code [16] denoted by D(Z2). It is based
on the group Z2 = {0, 1}, with 0 · 0 = 0, 1 · 1 = 0 and 0 · 1 = 1, that acts on spin-1/2
particles, which are defined on the links of a lattice. The Hamiltonian of this system is
defined in terms of Pauli operators. By employing simple properties of Pauli operators we
show that the toric code supports Abelian anyons. Due to its simplicity the toric code is
one of the most studied topological models. It can serve as a platform for various quantum
information tasks and as a test bed for the properties of topological systems.

Hamiltonian

Consider a square lattice with qubits or spin-1/2 particles positioned at the lattice links,
as shown in Figure 5.2. To construct the Hamiltonian we employ the vertex and plaquette
interaction terms given, respectively, by

A(v) = σx
v,1σ

x
v,2σ

x
v,3σ

x
v,4 (5.7)

and

B(p) = σz
p,1σ

z
p,2σ

z
p,3σ

z
p,4. (5.8)

The indices 1, ..., 4 of the Pauli operators, σz or σx, enumerate the edges of each vertex or
plaquette. The defining Hamiltonian is
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tFig. 5.2 The toric code defined on a square lattice with spin-1/2 particles positioned at its edges. The
interaction terms of the model are the vertex operators A(v) = σx
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tFig. 5.3 By applying a σz rotation on spin 1 of the ground state | ξ〉 the operators A(v) of the vertices
neighbouring spin 1 obtain eigenvalue −1. This detects the presence of e anyons. Two σx

rotations create four m anyons. If two m anyons are positioned at the same plaquette, e.g. due to
the σx rotations of spins 2 and 3, they annihilate each other. This finally gives two anyons at the
endpoints of the string passing though the rotated spins 2 and 3.

H = −
∑

v

A(v) −
∑

p

B(p). (5.9)

Each of the interaction terms commute with the Hamiltonian as well as with each other.
Moreover, they square to one so their eigenvalues are ±1. Using these properties, we can
find the spectrum of Hamiltonian (5.9). In particular, its ground state is given by

| ξ〉 =
∏

v

1
√

2

(
1 + A(v)

)
|00...0〉 (5.10)

since σz|0〉 = |0〉 for all spins of the lattice. Indeed, | ξ〉 is an eigenstate of all A(v) and B(p)
operators with eigenvalue 1.
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Anyons and their fusion

The ground state | ξ〉 corresponds, by definition, to the anyonic vacuum, i.e. the absence of
any anyon. One can excite pairs of anyons on the lattice using single spin operations. By
applying σz rotations on a spin of the lattice a pair of quasiparticle excitations is created on
the two neighbouring vertices, as shown in Figure 5.3. These quasiparticles correspond to
eigenvalue −1 for the corresponding A(v) operators and are called e-type anyons. The state
of these anyons is usually denoted as |e, e〉 = σz|ξ〉. It describes an e anyon positioned at
each vertex neighbouring the rotated spin. An m-type anyon lives on plaquettes for which
the B(p) operator has eigenvalue −1. The m anyons are created in pairs from σx rotations
such that |m,m〉 = σx|ξ〉. The combination of both e and m anyons creates the composite
quasiparticle ε with |ε, ε〉 = σzσx|ξ〉 = iσy|ξ〉.

The presence of e, m and ε quasiparticle excitations is detected by measuring the eigen-
values of the corresponding A(v) or B(p) operators. Eigenvalue +1 corresponds to the vac-
uum while −1 detects the presence of an anyon. If the same Pauli rotations are applied
on spins of the same vertex or plaquette then they create two overlapping anyons. The re-
sulting eigenvalue of A(v) or B(p), respectively, is +1. So the outcome of the fusion is the
vacuum, as shown in Figure 5.3. By time ordering the Pauli rotations we can move anyons
around the lattice. We shall indicate the position of the rotations with a string. The anyons
are always at its endpoints. Strings associated to e anyons lie on the square lattice, while
strings of m anyons lie on its dual square lattice. The dual lattice has its vertices at the
centre of the plaquettes of the original lattice. For a system with open boundaries a string
may end up at the boundary describing a single anyon at its free endpoint.

In general, an even number of σz rotations applied to the spins of a certain vertex, v, has
eigenvalue of A(v) equal to 1, while an odd number has eigenvalue −1. Similarly, an even
number of σx rotations on spins of the same plaquette gives eigenvalue 1, while an odd
gives −1. Together with the composition rule for the ε particle, these properties translate to
the following fusion rules

e × e = m × m = ε × ε = 1, e × m = ε, ε × e = m and ε × m = e (5.11)

that describe the outcome from combining two anyons, where 1 is the vacuum state. The
fusion rules dictate that if two anyons are created on the same plaquette or vertex, then
they annihilate. The annihilation operation also glues two single strings of spin rotations
of the same type together to form a longer string, again with a pair of anyons at its ends, as
shown in Figure 5.3.

If a string of σx or σz operations forms a loop, then the anyons at its ends annihilate
each other, thus removing anyonic excitation. An isolated elementary loop of σz rotations
around a plaquette p is actually the B(p) operator. If we span a loop around two neighbour-
ing plaquettes p and p′, as shown in Figure 5.4, then the resulting operator corresponds to
B(p)B(p′). In other words, a larger loop can be broken down into smaller ones that overlap
at the internal edges, as (σz)2 = 1. Similarly, loops of σx operators can be constructed out
of A(v) operators. The eigenvalue of the σx loop operators detects if the loop encloses an
odd or an even number of e anyons. Differently put, they read the total fusion outcome of all
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results from the product of A(v) operators. These loop operators can detect the parity of the total
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tFig. 5.5 A straight string of three σx rotations creates two m anyons at its endpoints. When a A(v)
operation is applied at a vertex neighbouring the string then their common site cancels and the
string of σx operators is deformed.

the enclosed e anyons. Equivalent considerations hold for σz loops and the corresponding
m anyons.

Finally, we would like to study the properties of the strings that connect anyons. Con-
sider two m anyons at the endpoints of a string of σx operators. Their state is invariant with
respect to deformations of the shape of the string as long as its endpoints remain fixed.
This can be verified in the following way. The state of the two anyons does not change if
we apply any of the stabilisers A(v). If the elementary square loop that corresponds to A(v)
has a common edge with the string operator, then this edge-operator will be cancelled and
the shape of the string will be deformed, as shown in Figure 5.5. Hence, both strings, the
straight and the deformed one, give rise to the same two anyon state.

An alternative approach is to consider the ground state | ξ〉. From (5.3) we see that the
ground state is the equal superposition of all possible products of elementary loops A(v).
Application of any contractible loop operator on the ground state gives back the same state
with its components rearranged. The excited states inherit this property by being the equal
superposition of all possible strings that connect the two anyons. Hence, the exact shape of
the string does not have any physical meaning. Only the position of the anyons does.
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tFig. 5.7 The exchange of two ε particles by subsequent exchanges of their constituent e and m anyons.
Care needs to be taken not to rotated the ε particles between the initial and final states to avoid
contributions from spin rotations. The exchange operation is given by a sequence of Pauli
rotations on qubits 1 and 2, i.e. (σx

1σ
z
1σ

z
2σ

x
2)(σx

2σ
z
2σ

x
1σ

z
1) = −1. Hence, the ε’s are fermions.

Anyonic statistics

We now like to probe the statistical behaviour of e, m and ε quasiparticles. Consider two e
anyons, as shown in Figure 5.6. We can exchange their position by applying σx rotations.
The final configuration is equal to the initial one with the addition of a loop of σx’s passing
through the position of both anyons. As this loop operator acts on plaquettes with no m
anyons, it gives back the identity. Hence, the final state of the system equals the initial one,
thereby signalling the bosonic mutual statistics of e anyons.

The same argument holds for the m anyons, but not for the ε anyons. We can actually
demonstrate that the mutual statistics of ε particles is fermionic. Consider a pair of ε’s
constructed out of the constituent e and m anyons, as presented in Figure 5.7. The anyon ε
is an extended object as it occupies a plaquette and its neighbouring vertex. We would like
to exchange the positions of the ε’s without rotating them. An overall rotation could cause
extra phase factors due to the spin particle ε might have. Under this condition an exchange
is given by the following Pauli rotations acting on the state of the two fermions

(σx
1σ

z
1σ

z
2σ

x
2)(σx

2σ
z
2σ

x
1σ

z
1) = −1. (5.12)

Each set of spin rotations inside the brackets moves each particle from its initial position
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tFig. 5.8 String operators Cσz and Cσx have e and m anyons at their endpoints, respectively. A looping
operation Lσz braids the e anyon around the m and brings it back to its original position. This
braiding gives rise to a non-trivial phase factor due to the anti-commutation of σx and σz

operators of the strings that meet at one point.

to the final one. At the end the string operators cancel each other and an overall phase of
−1 remains, which reveals the fermionic statistics of ε particles.

As the e and the m anyons are distinguishable, we cannot directly exchange them, but we
can braid them. Braiding corresponds to two exchanges from where we can attribute their
exchange statistics as the square root of the resulting evolution. We now show that a non-
trivial phase emerges, which makes the braiding evolution similar to the Aharonov-Bohm
effect. Consider the initial state

|Ψini〉 = CσxCσz |ξ〉, (5.13)

where Cσα , with α = x or z, are strings of Pauli operators with the corresponding anyons
at their endpoints. This gives rise to neighbouring e and m anyons, as shown in Figure
5.8. During braiding, the e anyon is moved around the m anyon along the path generated
by successive applications of σz rotations thereby giving rise to the looping Lσz operator.
Note that the Lσz operator meets the Cσx across a single spin, so

LσzCσx = −Cσx Lσz . (5.14)

We can now manipulate the final state in order to bring the operator Lσz to act on the
vacuum, where we know it has trivial action. Then the final state is given by

|Ψfin〉 = Lσz |Ψini〉 = Lσz (CσxCσz |ξ〉) = −CσxCσz Lσz |ξ〉 = −|Ψini〉 . (5.15)

This result is independent of the particular shape of the loop Lσz as long as it circulates the
m anyon exactly once. The topological phase factor of −1 reveals a non-trivial statistics
between e and m anyons. Symbolically, we assign the exchange phase i to these anyons.
This behaviour is different from the braiding of bosons or fermions. The same phase is
obtained if we braid e or m with ε particles. It is worth noting that the −1 in (5.12) corre-
sponds to a single exchange and signals the fermionic character of ε, while the −1 in (5.15)
corresponds to two exchanges and signals the anyonic character between different types of
particles of the toric code.



89 5.2 Quantum double modelst

! 

1

! 

2

! 

e

! 

m

! 

3

! 

4

tFig. 5.9 Rotating counterclockwise an ε fermion by 2π around itself is equivalent to moving its constituent
e anyon around the m one by σz rotations on the qubits 1, 2, 3 and 4. The resulting phase factor
−1 reveals that ε has spin one-half.

We would now like to probe the spin of these particles. The e and m particles are bosons
and have trivial spins. In particular, they cannot be rotated as they do not have a sense of
orientation. The ε particles are expected to have spin one-half as they are fermions. Indeed,
a counterclockwise 2π rotation corresponds to moving the e constituent anyon around m
by the operator σz

1σ
z
2σ

z
3σ

z
4. This is a plaquette operator that detects the population of m’s

leading to the phase factor of −1, thereby revealing the half spin of ε fermions [72].

Encoding information

In the previous we demonstrated that the quasiparticle excitations of the toric code have
anyonic statistics. These properties do not depend on the topology of the surface where
the lattice Hamiltonian is defined. The surface topology becomes however important when
one wants to employ the toric code to encode quantum information. Non-trivial genus
can give rise to ground state degeneracy. For concreteness consider a torus with genus
one. A torus configuration can be produced by imposing periodic boundary conditions in
both directions of a toric code lattice, as the one given in Figure 5.2. Transforming one
ground state to another involves creating a pair of anyons and then moving them along
non-contractible loops of the torus before re-annihilating them, as shown in Figure 5.10.
As the resulting state does not have excitations it corresponds to a ground state. Moreover,
it is different from the initial state as the loop is non-contructable. Denoting the two non-
equivalent trajectories on the torus as 1 and 2 we can define the ground states

|Ψ1〉 , |Ψ2〉 = C1
σz |Ψ1〉 , |Ψ3〉 = C2

σz |Ψ1〉 , |Ψ4〉 = C1
σzC2

σz |Ψ1〉 . (5.16)

The state |Ψ1〉 can be chosen to be the ground state | ξ〉 given explicitly in (5.10). Then the
operators C1

σz and C2
σz act on | ξ〉 by generating a pair of e anyons, moving them along the

directions 1 or 2 respectively and then annihilating them. The resulting states are invariant
under continuous deformations of the anyonic loops. So only four states can be created
in this way. These states are linearly independent as they correspond to superpositions of
loop configurations that differ with respect to their winding around the torus. A linearly
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The ground state has fourfold degeneracy |Ψi〉, for i = 1, ..., 4. Starting from the vacuum state
|Ψ1〉 one can create a pair of e anyons and wrap them around two non-trivial inequivalent loops
on the torus giving the states |Ψ2〉 and |Ψ3〉. State |Ψ4〉 corresponds to spanning both
inequivalent loops.

dependent set of states can be obtained by employing the loop operators that correspond to
m or combinations of e and m anyons (see Exercise 5.3). Hence, a four dimensional Hilbert
space arises that can encode two qubits. If the toric code is defined on a surface with genus
g, then it can encode 2g qubits.

The fourfold degeneracy of the toric code ground state can be verified independently by
considering the number of qubits in the system and by considering the number of stabiliser
conditions imposed on the ground state. On a square lattice, L× L, we have 2L2 spins. The
stabiliser conditions are

A(v) | ξ〉 = | ξ〉 and B(p) | ξ〉 = | ξ〉 (5.17)

for all L2 vertices v and for all L2 plaquettes p. With open boundaries the stabiliser condi-
tions are as many as the spins, so they define a single ground state, which is given in (5.10).
If we impose periodic boundary conditions on the lattice, i.e. restrict it on a torus then the
stabiliser conditions are not all independent. We can verify that the following conditions
hold ∏

v

A(v) = 1 and
∏

p

B(p) = 1. (5.18)

In other words, multiplying all A(v) or all B(p) operators together on the torus involves the
squaring of Pauli operators as there are always overlapping edges. Hence, there are two
stabiliser conditions less, one from the A’s and one from the B’s. Equation (5.17) therefore
has four solutions rather than one, in agreement with the number of solutions suggested by
(5.6).

Now we are in position to interpret the toric code as an error correcting code. Consider
the toric configuration with L spins at each of the two directions where we impose periodic
boundary conditions. The L2 spins comprise the Hilbert space H . The operators A(v) and
B(p) comprise the stabiliser set of commuting operators. Hence, the degenerate ground
states, here being fourfold, is the code C, where logical information can be encoded. Errors
correspond to undesired spin rotations that, as we have seen, create anyonic excitations. A
k-local error corresponds to k neighbouring qubits being rotated. The worst case scenario
is having an extended string operator of length k with two anyons at its endpoints. String
operators like C1

σz create a pair of anyons, move one of them around a non-contractible loop
and re-annihilate them. This operation corresponds to encoded logical gates. Error detec-
tion corresponds to measuring the errors with the help of the stabilisers that can recognise



91 5.2 Quantum double modelst
(a) (b) (c) (d) tFig. 5.11 Two errors on the toric code in the form of anyonic excitations could have been originated from

two different strings as the ones depicted in (a) and (b). To fuse the anyonic errors we can move
them rightwards or leftwards. Depending on the original path that created the anyons the
resulting configuration might return the system to its correct encoding state (c) or it can result to
an undesired looping operator (d).

the position of the anyons. Error correction then corresponds to fusing these anyons to-
gether, which returns the system back to the vacuum. Nevertheless, we need to make sure
we do not create non-contractible loops during the error correction procedure, since that
would correspond to an undesired logical gate.

To analyse the error correction process, consider the toric code with two anyonic errors.
In Figures 5.11(a) and (b) we depict two different ways these errors may have been created.
The error detection process can measure the position of the anyons. However, the string
that generated the anyons is not measurable, so we cannot distinguish between these two
cases. The error correction step aims to fuse the two anyons so that the state of the system
becomes a ground state. Nevertheless, we would like to recover the original state before
the errors happened and not to perform a logical error by realising a non-contractible loop.
These two cases are described in Figures 5.11(c) and (d).

The strategy we adopt is to annihilate the anyons through the shortest possible path on
the geometry of the torus. This elimination of errors could affect the logical space only
if the two errors have propagated a distance larger than bL/2c, where L is the linear size
of the torus. In that case the error correction step might result in a non-contractible loop
that corresponds to an undesired logical gate. Otherwise, the shortest distance annihilation
method can protect against any error that is bL/2c local. Hence, the toric codes corresponds
to a [[L2, 2, L]] error correcting code.

With the toric code Hamiltonian (5.9) present, the generation of errors is penalised by an
energy gap. Errors in the form of virtual anyonic excitations are exponentially suppressed
from going around the torus. Hence, large torus size is favourable. Such Abelian models
are not suited for quantum computation as the encoded logical gates produce only phase
factors and, thus, are not universal. But we can employ the Abelian models as quantum
memories. The general case of Abelian anyons is analysed in Example I at the end of this
Chapter.

5.2.2 General D(G) quantum double models

We now discuss the quantum double models D(G) for a general finite group G. The Hamil-
tonian of these models can support a rich variety of anyonic excitations with Abelian and
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|G|-dimensional spins at its links. The lattice is oriented with vertical links pointing upwards and
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± operators are given according to

their position with respect to an oriented edge.

non-Abelian statistics [16, 74]. Here we give a general treatment, while Examples I and II
below provide a more detailed analysis.

Quantum double models can be defined on a general two-dimensional lattice, but for
convenience we employ the square lattice. A spin-like Hilbert space V is defined at each
link of the lattice with orthonormal basis {| g〉 : g ∈ G}, labeled by the group elements. This
space has dimension dim(V) = |G|, where |G| is the number of elements in the finite group
G. In the case of the toric code,V is two-dimensional as Z2 has only two elements.

To proceed we define the linear operators Lg
± with g ∈ G, that are associated with vertices

of the lattice and T h
± with h ∈ G, that are associated with plaquettes. These operators act on

the spin Hilbert space,V, such that

Lg
+ | z〉 = | gz〉 , Lg

− | z〉 =
∣∣∣ zg−1

〉
, T h

+ | z〉 = δh,z | z〉 , T h
− | z〉 = δh−1,z | z〉 . (5.19)

In the case of the toric code all the Lg
±’s correspond to the σx Pauli operator, while the

T h
±’s become (1 ± σz)/2. The action of the Lg

± operators on the states follows the group
multiplication, while the T h

±’s act as projectors. More concretely, one can show that these
operators satisfy the following commutation relations

Lg
+T h

+ = T gh
+ Lg

+, Lg
−T h

+ = T hg−1

+ Lg
−, Lg

+T h
− = T hg−1

− Lg
+, Lg

−T h
− = T gh

− Lg
−. (5.20)

To consistently define the Hamiltonian of the system we introduce an orientation in the
edges of the lattice. Changing the orientation of an edge corresponds to changing the basis
state from | g〉 to

∣∣∣ g−1
〉
. For the toric code case with Z2 = {0, 1} a choice of orientation is not

necessary as 0−1 = 0 and 1−1 = 1. For simplicity we take the vertical edges of the square
lattice oriented upwards and the horizontal ones rightwards, as shown in Figure 5.12. To
each vertex v of the lattice we assign a vertex operator defined by

A(v) =
1
|G|

∑
g∈G

Lg
+,1Lg

+,2Lg
−,3Lg

−,4, (5.21)

with the convention of signs and the enumerations as in Figure 5.12. Similarly, for a pla-
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quette p one can define

B(p) =
∑

h1...h4=1

T h1
−,1T h2

−,2T h3
+,3T h4

+,4. (5.22)

These operators are local and have a discrete spectrum.
The quantum double model can be viewed in terms of a gauge theory. Let us interpret

the transformations Ag(v) = Lg
+,1Lg

+,2Lg
−,3Lg

−,4 acting on the spin states as local gauge trans-
formations. From this perspective A(v) symmetrises these states with respect to all possible
group transformations with respect to the group G. So it can project out states that are not
gauge invariant at vertex v, i.e. it identifies the absence of charges on that vertex. Similarly,
the B(p) operator projects out states with non-vanishing magnetic flux passing through
plaquette p. Note that the charge and flux description is effectively emerging from the in-
terpretation of the spin states around the vertex or the plaquette. The e and the m anyons of
the toric code are therefore also called charge and flux anyons, respectively.

All of the operators A(v)’s and B(p)’s commute with each other (see Exercise 5.1).
Hence, the Hamiltonian

H = −
∑

v

A(v) −
∑

p

B(p) (5.23)

is in the stabiliser formalism and can be diagonalised directly. The ground state | ξ〉 satisfies

A(v) | ξ〉 = | ξ〉 , B(p) | ξ〉 = | ξ〉 , for all v and p (5.24)

denoting the absence of anyons. Excitations are identified by the violation of conditions
(5.24). They correspond to quasiparticles that live on the vertices or the plaquettes of the
lattice or simultaneously on a vertex and a neighbouring plaquette. It is possible to find
the projectors that identify the type of quasiparticles and their properties, but this prob-
lem is complex in its generality [16]. The quasiparticles can be Abelian, if they are based
on Abelian groups, or non-Abelian arising e.g. from the S 3 group with non-commuting
elements. Both cases are presented in detail in the following Examples.

The main property of non-Abelian anyonic Hamiltonians that is of interest for quantum
computation is their large fusion space degeneracy. This is created by the presence of non-
Abelian anyons. Hamiltonian (5.23) is naturally gapped as the A(v) and B(p) operators have
a discrete spectrum, so quantum information encoded in anyons is energetically protected
from errors. The advantage over the Abelian anyon encoding, as we have seen for example
with the toric code, is that one can manipulate the information by braiding the anyons
together, rather than by creating anyons and circulating them around the torus. In addition,
the dimension of the encoding space can be increased by creating more anyons rather
than changing the topology in terms of the surface genus. This dramatically simplifies the
control procedure and can give rise to universal quantum computation for certain types of
non-Abelian models.
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5.3 Example I: Abelian quantum double models

The toric code belongs in the general family of cyclic Abelian quantum double models
denoted as D(Zd) [16]. For these models the elements of the group are given by

Zd = {0, 1, ..., d − 1}. (5.25)

The product between two group elements h, g ∈ Zd is defined as their addition modulo d,
i.e.

g · h = g + h (mod d). (5.26)

Next we consider a lattice with square geometry and assign d-level spins on every edge.
We parameterise the spin states by the group elements (5.25). Rotations of the spins are
given in terms of the generalised Pauli operators

X =
∑
h∈Zd

| h + 1 (mod d)〉 〈h | , Z =
∑
h∈Zd

ωh | h〉 〈h | , (5.27)

where ω = ei2π/d. For d = 2 we obtain the usual anticommuting Pauli operators, σx and
σz, respectively. In general they satisfy the commutation relation

ZX = ωXZ. (5.28)

As the X operator displaces the labelling of the states by a unit, in a periodic fashion, its
eigenstates are given by

| g̃〉 =
1
√

d

∑
h∈Zd

ωgh | h〉 for g = 0, ..., d − 1, (5.29)

with the corresponding eigenvalues being ω−g = e−i2πg/d for each g ∈ Zd.
Similarly to the toric code we define the vertex and plaquette operators by

A(v) = X1
†X2

†X3X4 and B(p) = Z1
†Z2Z3Z4

†, (5.30)

respectively, where the numbering proceeds as in Figure 5.13. Both of these operators have
eigenvaluesωg. Note that an orientation of the lattice edges is defined throughout the lattice
that assigns the conjugation of the appropriate Pauli matrices in definitions (5.30).

Consider a general eigenstate, |ψ〉, of all vertex and plaquette operators. We define a
certain vertex, v, or plaquette, p, to be unoccupied if A(v) |ψ〉 = |ψ〉 or B(p) |ψ〉 = |ψ〉,
respectively. An anyon eg is associated with a vertex, v, if A(v) |ψ〉 = ωg |ψ〉. An anyon
mh is associated with a plaquette, p, if B(p) |ψ〉 = ωh |ψ〉. The presence of both anyons,
eg and mh, in adjacent plaquette and vertex is associated with the composite particle εg,h.
Following these definitions we can specify the Hamiltonian

H = −

[∑
v

∑
h∈Zd

(
A(v)

)h
+

∑
p

∑
h∈Zd

(
B(p)

)h
]
, (5.31)

that has the anyonic vacuum, | ξ〉, as its ground state. This Hamiltonian assigns equal energy
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ptFig. 5.13
An Abelian quantum double model defined on a square lattice with a d-level spin on each edge.
The numbering of the spins around each vertex, v, and plaquette, p, is given together with the
link orientations. Anyons eg reside on vertices and mh on plaquettes. They are created in pairs
and transported by single spin operations.

to all eg and mg quasiparticle excitations, because the sums
∑

h∈Zd

(
A(v)

)h
are projectors

onto the vacuum state for each vertex. So they act identically on each anyon eg for g ∈
Zd. An analogous argument applies to plaquette occupations. The resulting anyon model
comprises of d2 different particle species given by

1, eg, mg, εg,h for all g, h ∈ Zd, (5.32)

identified by the A(v) and B(p) operators. The fusion rules of these particles are given by

eg × eh = eg+h (mod d), mg × mh = mg+h (mod d), and eg × mh = εg,h. (5.33)

Consider now the braiding operation of an eg around an mh. From the commutation relation
(5.28) we deduce the R matrix

(Rεg,h

eg mh )2 = ωgh, where ω = ei2π/d. (5.34)

The rest of the non-trivial braiding matrices are deduced from Rεg,h

eg mh . As these are Abelian
anyons, all their F matrices are trivial.

Presence of anyons corresponds to a violation of the stabiliser conditions of the vertex or
plaquette operators. The generation of anyons is achieved by applying Z or X spin rotations
to the ground state | ξ〉, as shown in Figure 5.13. Due to the fusion relations (5.33), the
antiparticle of eg is e−g and the antiparticle of mg is m−g. This means, single spin rotations
create particle-antiparticle pairs with positions that are determined by the orientation of
the corresponding link. A Zg rotation of spins 1 or 2 of a vertex, v, or Z−g rotation on 3 or
4, creates an eg charge at that vertex and an e−g charge on the other vertex shared by the
rotated spin. Similarly, a Xg on spins 2 or 3 of a plaquette, p, or a X−g on 1 or 4, creates an
mg flux on that plaquette and an m−g on the other plaquette shared by the rotated spin. In
general, each string of Z or X rotations has a particle on one end and its antiparticle on the
other.
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5.4 Example II: The non-Abelian D(S 3) model

Since the structure of non-Abelian quantum double models D(G) is most easily approached
through an example, we now look at the simplest non-Abelian finite group G = S 3. This
group corresponds to all possible permutations of three objects. We express every element
of S 3 in terms of the generator t, that describes the exchange of two specific objects out
of the three, and the generator c, that yields a cyclic permutation of all three objects along
a given direction. These operators satisfy t2 = c3 = e and tc = c2t, where e denotes the
identity element. Using this notation we find six independent elements of the group given
by

S 3 = {e, c, c2, t, tc, tc2}, (5.35)

so |S 3| = 6. Let us pick an oriented two-dimensional square lattice. On each edge there
resides a six-level spin spanned by the states | g〉, where g is an element of S 3.

Define a set of six operators acting on vertex v by

Ag(v) = Lg
+,1Lg

+,2Lg
−,3Lg

−,4, for g ∈ S 3, (5.36)

as depicted in Figure 5.14, where the action of the operators Lg
± on the edge spins is given

in (5.19). These operators satisfy [Ag(v), Ag′ (v′)] = 0 for all v and v′ as well as g and g′

(see Exercise 5.1). Similar definitions hold for the plaquette operators but we shall not give
them explicitly here. According to (5.21) we can build the vertex operator A(v) as

A(v) =
1
6

[
Ae(v) + Ac(v) + Ac2 (v) + At(v) + Atc(v) + Atc2 (v)

]
. (5.37)

This operator identifies if a state |ψ〉 of the whole lattice has the vacuum at vertex v through
the condition A(v) |ψ〉 = |ψ〉. Hence, we define the vertex operator

P1(v) = A(v), (5.38)

as the projector onto the vacuum 1 for vertex v. The stabiliser space consisting of states
with no quasiparticles, i.e. those for which A(v) | ξ〉 = | ξ〉 for all v and B(p) | ξ〉 = | ξ〉 for
all p, where B(p) is defined as in (5.22). The Hamiltonian of the system is given by

H = −
∑

v

A(v) −
∑

p

B(p). (5.39)
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This assigns energy to states that violate the stabiliser conditions and thus protects the code
from undesired perturbations.

Similarly to (5.37) we can define projectors onto quasiparticle occupations of the ver-
tices. There is a large variety of particles associated with the vertices and plaquettes of
D(S 3) [74]. Here we shall be concerned with only the vertex quasiparticles, Λ and Φ,
defined through the projectors

PΛ(v) =
1
6

[Ae(v) + Ac(v) + Ac2 (v) − At(v) − Atc(v) − Atc2 (v)] , (5.40)

PΦ(v) =
1
3

[2Ae(v) − Ac(v) − Ac2 (v)] . (5.41)

Projectors (5.38), (5.40), (5.41) are all orthogonal to each other, i.e. PX(v)PX′ (v) = 0 for
X , X′. Importantly, PΛ(v) defines through the condition PΛ |ψ〉 = |ψ〉 the occupation
of quasiparticle Λ at v and, similarly, PΦ(v) defines quasiparticle Φ. Quasiparticles Λ and
Φ are created from the stabiliser space by acting on a single spin s with the following
operators

WΛ(s) = | e〉 〈e | + | c〉 〈c | +
∣∣∣ c2

〉 〈
c2

∣∣∣ − | t〉 〈t | − | tc〉 〈tc | − ∣∣∣ tc2
〉 〈

tc2
∣∣∣ , (5.42)

WΦ(s) = 2 | e〉 〈e | − | c〉 〈c | −
∣∣∣ c2

〉 〈
c2

∣∣∣ . (5.43)

Direct application of the projectors PΛ(v) and PΦ(v) shows that WΛ and WΦ create anyons
on the two vertices that share the rotated spin. A protocol to move anyons several edges
apart is given in [95].

Having established the explicit form of the creation operators of the anyons helps us to
identify their properties. All of the particles, 1, Λ and Φ, have trivial statistics with respect
to each other, but they can still exhibit non-Abelian behaviour. When anyons of different
type are brought at the same vertex, the possible outcomes are given by the fusion rules

Λ × Λ = 1, Λ × Φ = Φ, Φ × Φ = 1 + Λ + Φ. (5.44)

In other words, two Λ anyons fuse to the vacuum, while a Λ can be absorbed in a Φ without
changing its nature. The last fusion rule implies that Φ’s are non-Abelian anyons that have
three possible fusion channels 1, Λ and Φ. Note that even if the model supports more
particles, these fusion relations are closed, involving only 1, Λ and Φ.

One can verify these fusion rules from the creation operators (5.42) and (5.43) of the
anyons. Consider a certain spin s. Direct application of (5.42) and (5.43) shows that

WΛ(s)WΦ(s) = WΦ(s), (5.45)

which demonstrates that creating a Λ and a Φ anyon on the same vertex is equivalent to
having only a Φ anyon on that vertex. Let us now place two Φ’s on the same vertex. By
direct algebra one can show that

WΦ(s)WΦ(s) = 4 | e〉 〈e | + | c〉 〈c | +
∣∣∣ c2

〉 〈
c2

∣∣∣ = W1(s) + WΛ(s) + WΦ(s). (5.46)

Hence, the fusion of two Φ’s can in general result in all types of particles, 1, Λ and Φ. In
the following we shall see how these properties can be employed for encoding qubits with
non-Abelian anyons.
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(a) Four vertices, v1, v2, v3 and v4 are considered as the minimal system to encode one qubit by
employing four Φ anyons. (b) Operations WΦ(1) and WΦ(3) generate two pairs of Φ anyons, each
one with a vacuum fusion channel, i.e. qubit state | 0L〉. Application of WΛ(4) transforms both
pairs into the Λ fusion channel, i.e. qubit state | 1L〉.

5.5 Quantum doubles as quantum memories

It is our aim now to employ the D(S 3) non-Abelian quantum double model, presented in
Section 5.4, as a quantum memory. There exist many explicit strategies in the literature on
how to employ Abelian anyons for this purpose [96, 97]. The non-Abelian cases seem to
be treated in a more abstract level [83, 98]. Compared to Abelian anyons, such as the toric
code, non-Abelian anyons have certain advantages in encoding and manipulating informa-
tion. For example, they do not employ the genus of the surface to encode qubits, but rather
the number of anyons on a surface with trivial topology. The D(S 3) model has been studied
in considerable detail in [95].

5.5.1 Non-Abelian information encoding and manipulation

As shown in Section 5.4 the non-Abelian D(S 3) model offers a simple subset of particles,
namely the charges 1, Λ and Φ that satisfy the fusion rules,

Λ × Λ = 1, Λ × Φ = Φ, Φ × Φ = 1 + Λ + Φ. (5.47)

We employ the last fusion rule to encode the qubit states in the fusion outcomes 1 and Λ

of two Φ’s.
To encode a qubit consider four neighbouring vertices, as shown in Figure 5.15. Apply-

ing WΦ to spins 1 and 3 on the vacuum state | ξ〉 creates two pairs of Φ charges: one on
vertices v1 and v2 and the other on v3 and v4. Since these pairs are created from the vacuum,
they both carry the vacuum fusion channel when they are fused horizontally. This state is
identified with the logical qubit state | 0L〉. Applying the operator WΛ to spin 4 of the re-
sulting state creates a pair of Λ particles. One of these will fuse with the Φ on v1 and the
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other with the Φ on v4. After these fusions, the two horizontal Φ pairs carry the Λ fusion
channel. This state is identified with the logical qubit state | 1L〉. The same is achieved if
WΛ is applied to spin 2. The encoded states for the logical qubit can be explicitly written
as

| 0L〉 = WΦ(1)WΦ(3) | ξ〉 ,

| 1L〉 = WΛ(4)WΦ(1)WΦ(3) | ξ〉 , (5.48)

where | ξ〉 is the vacuum state. Both logical states are four Φ anyon states, but with different
pairwise fusion channels.

It is possible to move the encoding Φ anyons apart rather than keeping them all on
neighbouring vertices. Then their fusion outcome, and hence the encoded information, is
topologically protected from errors that act as local operators. An error in the form of a
spurious Λ anyon present in between two Φ’s can be fused with the Φ anyon that is closest
to it. This error correcting step is similar to the one we employed in the toric code. Here
the distance of the code is the geometric distance between the Φ anyons that encode the
information.

In (5.48) the operators act on a single spin, s, and they generate neighbouring anyons.
When the anyons are positioned further apart, the operations act on a corresponding chain
of spins, C, lying on a path connecting the anyons. The operations WΛ(C) and WΦ(C) that
create these anyons at distant locations take the form

WΛ(C) =
∏
s∈C

WΛ(s),

WΦ(C) =
∑

k=0,1,2

∑
gn×...×g1=ck

(ωk + ω−k) | g1, ..., gn〉 〈g1, ..., gn | . (5.49)

In this definition g1, ..., gn are the states of the spins within the chain C, c is the element of
S 3, while ω = ei2π/3. When n = 1 these definitions reduce to (5.42) and (5.43). The logical
states can be written as in (5.48). By employing 4n anyons of type Φ we can therefore
encode n qubits.

After encoding a qubit in two pairs of Φ anyons we would like to perform logical oper-
ations on it. A logical X operation corresponds to a process that creates two Λ charges and
fuses both with a Φ from each pair. This evolution is described by

X = WΛ(C), (5.50)

where C is a path that connects two Φ’s, one from each pair. Note that WΛ(C) does not
correspond to braiding, so strictly speaking it is not a topological gate.

The logical Z operation corresponds to vertex operators acting on both Φ charges of
either pair. For example, it can be given by

Z = At(v1)At(v2). (5.51)

Such an operation corresponds to the topological evolution of taking a flux anyon that re-
sides on plaquettes and braiding it around v1 and v2. The further apart we keep the vertices
v1 and v2 the larger the loop the flux anyon needs to make in order to perform a Z opera-
tion. Hence, the encoded information is better protected from stray flux anyons when the
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encoding anyons are kept far apart. At the same time, the difficulty of the control procedure
for performing the Z gate increases. This trade off between the degree of protection and
accessibility of the encoded information is generic in topological models. What topological
models offer us is the means to outperform environmental errors in accessing the encoded
information.

Since the logical qubit is encoded in the fusion channel, measurement in the Z basis is
achieved through fusion of charge pairs. Fusing the Φ charges on v1 and v2 and obtaining
the vacuum or a Λ implies a logical qubit state of | 0L〉 or | 1L〉, respectively. Introducing
non-topological spin operations can make this simple scheme universal [99]. By only em-
ploying flux and charge anyons in the encoding of qubits and braiding operations, it is
possible to devise a more complicated scheme for universal quantum computation with
purely topological means [100, 95].

Summary

In this Chapter we presented the relation between quantum error correcting codes and a
specific family of topological spin lattice models called quantum double models. Having
an anyonic model described in terms of spin states enables us to study the spin rotations
that are necessary to manipulate the states of the anyons. Abelian anyon models, such
as the toric code, serve well in protecting quantum information from a variety of errors.
However, these anyons have simple mutual statistics meaning that information processing
by purely topological means is not possible. To achieve universal quantum computation one
can additionally employ non-topological operations, such as spin measurements [99]. Non-
Abelian anyons have a richer structure and can support universal quantum computation.
These models are rather complicated, as for example they need spin lattices with at least
six level spins, posing challenges for their realisation in the laboratory. Inspiring proposals
exist suggesting how we could implement these models with cold atom technology [101] or
with Josephson junctions [102, 103]. Architectures have also been proposed that produce
effective Hamiltonians for quantum doubles using two qubit interaction terms only [104].

Having an encoding space of quantum states that is protected from errors is an impor-
tant task for technological applications. Turning an error correcting code into a Hamilto-
nian combines a finite energy gap above the code space that penalises the generation of
errors with the non-local behaviour of the code states. This is a generic property of the
topological models that becomes explicit in the case of quantum doubles. We should bear
in mind that only coherent errors can be suppressed by the gap, i.e. spurious perturbations
to the Hamiltonian [77]. The latter can cause virtual excitations which are automatically
suppressed by keeping the characteristic size of the system large compared to the length
of the perturbation. If the errors are generated by thermal noise, then the mechanism de-
scribed above cannot automatically correct them [96]. To deal with this problem alternative
methods have to be considered that are the subject of ongoing research.
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Exercises

5.1 Demonstrate explicitly that the A(v) and B(p) operators, defined in (5.21) and (5.22)
respectively, commute with each other for any v and p.

5.2 Develop explicitly the quantum double theory for the Z2 group. The D(Z2) model is
the toric code.

5.3 Establish the fourfold degeneracy of the toric code by demonstrating that non-trivial
loops with C1

σz and C2
σz operations or combinations of them with C1

σx and C2
σx gives

states that are linearly dependent to (5.16).
5.4 What is the ground state degeneracy of the toric code model, defined on an infinite

plane with punctures in the form of absent vertex or plaquette interaction terms in
the Hamiltonian.



6 Kitaev’s honeycomb lattice model

In this Chapter, we consider Kitaev’s honeycomb lattice model [71]. This is an analyti-
cally tractable spin model that gives rise to quasiparticles with Abelian and non-Abelian
statistics. Some of its properties are similar to the fractional quantum Hall effect, which has
been studied experimentally in great detail even though it evades exact analytical treatment
[106]. Due to its simplicity the honeycomb lattice model is likely to be the first topolog-
ical spin model to be realised in the laboratory, e.g. with optical lattice technology [107].
Understanding its properties can facilitate its physical realisation and can provide a useful
insight in the mechanisms underlining the fractional quantum Hall effect.

The honeycomb lattice model comprises of interacting spin-1/2 particles arranged on
the sites of a honeycomb lattice. It is remarkable that such a simple model can support a
rich variety of topological behaviours. For certain values of its couplings Abelian anyons
emerge that behave like the toric code anyons. For another coupling regime non-Abelian
anyons emerge that correspond to the Ising anyons. The latter are manifested as vortex-like
configurations of the original spin model that can be effectively described by Majorana
fermions. These are fermionic fields that are antiparticles of themselves. They were first
introduced in the context of high energy physics [110] and become increasingly important
in the analysis of solid state phenomena [111]. In this Chapter we focus on the coupling
regime of the honeycomb lattice that gives rise to non-Abelian anyons.

As Kitaev’s honeycomb lattice model can support Ising anyons we can employ it to
perform topological quantum computation. Information encoded in the multiple fusion
channels of the anyons remains protected from environmental perturbations as long as the
anyons are kept far apart. We shall describe how one can transport the anyonic quasipar-
ticles by local manipulations of the honeycomb lattice couplings. Hence, we can readily
braid the anyons, thereby evolving the encoded information. Nevertheless, we have already
seen that this model cannot support universal quantum computation by topological opera-
tions alone. Thankfully, the honeycomb lattice naturally exhibits short range interactions
between quasiparticles. The resulting non-topological evolutions can be used to supple-
ment the braiding operations to comprise a universal set of gates [82, 83].

Since its introduction in 2005, the honeycomb lattice model has been in the centre of
numerous research efforts. The initial focus was on the Abelian phase as it provided a
physically plausible way to obtain the toric code model [112, 113, 114]. Subsequently,
attention was given to the non-Abelian phase that supports Ising anyons. Several studies
have been performed that relate the non-Abelian phase with the presence of edge states
[115], topological degeneracy [116] and entanglement entropy [117, 118]. Possible gener-
alisations of this model have also been considered [119, 120]. The presence of interactions
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between vortices was established in [121] and explicit demonstration of the non-Abelian
statistics was obtained in [124].

To approach the honeycomb lattice model we employ two main elements, the energy
spectrum and the corresponding energy eigenstates. By studying the spectrum for various
vortex configurations we identify the fusion degrees of freedom that correspond to non-
Abelian anyons. To calculate the non-Abelian statistics of the vortices, we adiabatically
transport them around each other. The corresponding evolution is given by a geometric
phase, which coincides with the Ising statistics.

6.1 Introducing the honeycomb lattice model

In our analysis of the honeycomb lattice model we follow the fermionisation approach in-
troduced by Kitaev [71, 125]. This allows us to rewrite the spin model in terms of Majorana
fermions, which are subject to an effective gauge field. For simplicity we restrict ourselves
to the parametric regime that supports non-Abelian anyons. These anyons emerge as the
vortex-like quasiparticles of the gauge field. The method presented in this section are ap-
plicable to models beyond Kitaev’s honeycomb lattice [126, 127, 128, 109].

6.1.1 The spin lattice Hamiltonian

Kitaev’s honeycomb lattice model [71] consists of spin-1/2 particles residing at the sites of
an infinite honeycomb lattice, as shown in Figure 6.1. We assign labels x, y and z on all links
aligned along the same direction. We also bi-colour the lattice such that each black site is
only connected to white ones and vice versa. The colouring reveals two triangular sub-
lattices that comprise the honeycomb lattice. The spins interact according to a Hamiltonian

H = −Jx

∑
x−links

σx
i σ

x
j − Jy

∑
y−links

σ
y
iσ

y
j − Jz

∑
z−links

σz
iσ

z
j − K

∑
(i, j,k)

σx
i σ

y
jσ

z
k, (6.1)

where Jx, Jy and Jz characterise positive nearest neighbour couplings. Different models
emerge for different values of these couplings.

In the dimerised limit, where one of the J couplings is larger than the sum of the other
two, a topological phase is realised that supports the toric code. In the following we take the
J couplings all equal, Jx = Jy = Jz = J which corresponds to the non-Abelian topological
phase [71]. The last term in (6.1) is an effective magnetic field with coupling K. It can
emerge as a perturbation when we introduce a Zeeman term [71, 108] in which case |K| �
J. Here we leave K as a freely tunable parameter. The sum runs over the sites such that
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The honeycomb lattice with spin-1/2 particles residing at its sites. This is a bi-colourable lattice.
We label all links as x, y and z according to their orientation. A single plaquette p is depicted with
its six sites enumerated.

every plaquette p contributes the six terms∑
(i, j,k)∈p

σx
i σ

y
jσ

z
k = σz

1σ
y
2σ

x
3 + σx

2σ
z
3σ

y
4 + σ

y
3σ

x
4σ

z
5 + σz

4σ
y
5σ

x
6 + σx

5σ
z
6σ

y
1 + σ

y
6σ

x
1σ

z
2,

where the enumeration around the plaquette p is given in Figure 6.1. The physical motiva-
tion to add this term is that it explicitly breaks time-reversal invariance, while preserving
the exact solvability of the model. To be more precise, time-reversal symmetry is described
by an anti-linear unitary operator T̂ , which acts on Pauli operators as

T̂σαi T̂ † = −σαi . (6.2)

Any product of an even number of Pauli operators with real coefficients will therefore re-
spect the time-reversal symmetry. On the other hand, any odd product, such as the coupling
of the spins with an external magnetic field or the three-spin term given in (6.1), will vio-
late it. As we shall see below, violation of the time-reversal symmetry allows for non-trivial
topological behaviour in the system as in the fractional quantum Hall effect.

The advantage of using a Hamiltonian with a three-spin coupling is that it has a local
symmetry. Consider the plaquette operators

ŵp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6. (6.3)

These Hermitian operators square to the identity,

ŵ2
p = 1, (6.4)

so their eigenvalues are wp = ±1. Moreover, they commute with each other,

[ŵp, ŵp′ ] = 0 for all p, p′, (6.5)

and with the Hamiltonian,

[H, ŵp] = 0 for all p. (6.6)
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A single spin-1/2 particle at a site of the lattice is described by two fermionic modes a1 and a2.
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Having both fermionic modes, a1 and a2, empty corresponds to the spin up state, while when
they are both occupied they correspond to spin down. Single occupancies are projected out of
the physical Hilbert space.

Relation (6.6) defines local symmetries that are at the heart of the solvability of the model.
Since the ŵp are conserved quantities, the Hilbert space L of N spins on a plane with

open boundaries can be partitioned into 2N/2 sectorsLw of dimension 2N/2. Each sectorLw

is labelled by a distinct pattern w = {wp} of the eigenvalues wp = ±1. Hence, the Hamil-
tonian can be reduced to each sector and the corresponding physics can be considered
independently. This significantly reduces the complexity of the problem.

6.1.2 Majorana fermionisation

Our goal is to bring the Hamiltonian (6.1) in quadratic form by representing the spin op-
erators with Majorana fermions [71]. The quadratic Hamiltonian can then be directly di-
agonalised as it describes non-interacting particles. We start by considering a given site i
and we introduce two fermionic modes a1,i and a2,i for each spin-1/2 particle, as depicted
in Figure 6.2. Let us adopt a decomposition of the fermionic modes a1,i and a2,i in their
“real” and “imaginary” parts as

ci = a1,i + a†1,i, bx
i = i(a†1,i − a1,i), by

i = a2,i + a†2,i, bz
i = i(a†2,i − a2,i). (6.7)

The motivation for the distinction between b’s and c’s will become apparent in the follow-
ing. The operators ci, bx

i , by
i and bz

i are anti-commuting and fermionic. In addition they sat-
isfy the “reality” condition bα†i = bαi , c†i = ci, i.e. they are their own antiparticles. This is the
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The orientation of the x, y and z links is from the black sites towards the white ones. The
next-to-nearest neighbour interactions are also depicted with their orientations.

defining relation of Majorana fermions. Here, the Majorana operators are introduced as a
tool to solve the Hamiltonian. Later, they appear again in a somewhat different formulation
to describe the properties of the honeycomb lattice model and its emerging quasiparticles.

We would now like to represent the spin operators in terms of Majorana fermions. There
is a redundancy in the fermionic encoding of the spins. Each spin-1/2 particle has a two-
dimensional space, while the two “complex” fermions, or the four Majorana fermions have
a four-dimensional space. To make the mapping consistent we need to project out two of
the fermionic states. As illustrated in Figure 6.3 we choose to represent spin up with having
both fermionic modes empty and spin down with having both modes occupied. This means

| ↑〉 = | 00〉 , | ↓〉 = | 11〉 (6.8)

with a1 | 00〉 = a2 | 00〉 = 0 and | 11〉 = a†1a†2 | 00〉. This representation is faithful if we
restrict to the subspace L of fermionic states |Ψ〉 that satisfy

Di |Ψ〉 = |Ψ〉 , (6.9)

where

Di = (1 − 2a†1,ia1,i)(1 − 2a†2,ia2,i) = bx
i by

i bz
i ci. (6.10)

In this subspace we can make the following identification

σαi = ibαi ci for α = x, y, z, (6.11)

which satisfies

[Di, σ
α
j ] = 0 and iσx

i σ
y
iσ

z
i = bx

i by
i bz

i ci = 1. (6.12)

This representation satisfies the algebra of the Pauli matrices, [σα, σβ] = iεαβγσγ, only
when we restrict to states that belong to L.

Employing the spin representation σαi = ibαi ci the Hamiltonian interactions become

σαi σ
α
j = −iûi jcic j and σx

i σ
y
jσ

z
k = −iûikû jkDkcic j, (6.13)
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where we define the link operators

ûi j = ibαi bαj , (6.14)

with α = x, y, z depending on the type of link (i j). The ûi j are anti-symmetric Hermitian
operators that satisfy

ûi j = −û ji, û2
i j = 1, û†i j = ûi j. (6.15)

Employing (6.13) and restricting the states of the system to the physical spaceL the Hamil-
tonian (6.1) takes the quadratic form

H =
i
4

∑
i, j

Âi jcic j, Âi j = 2Ji jûi j + 2K
∑

k

ûikû jk. (6.16)

The Âi j are link operators, while the ci’s are independent Majorana models that reside
on the links. The first term in Âi j corresponds to nearest neighbour interactions between
the ci’s. The second term describes next-to-nearest neighbour interactions between sites i
and j that are linked through site k. To consistently define the antisymmetric operator ûi j

throughout the lattice we need to define an orientation of the links, such as the one given
in Figures 6.4. We assign an overall + sign to every term involving sites i and j when the
arrow points from i to j and a − sign when the arrow points from j to i. If two sites are not
connected by an arrow the corresponding Âi j element is zero.

6.1.3 Emerging lattice gauge theory

The fermionisation of the spin degrees of freedom provides a new physical interpretation
of the honeycomb lattice model. To reveal this let us consider the properties of Hamiltonian
(6.16). It can be verified that

[H,Di] = 0, (6.17)

where H is now written in terms of the Majorana operators. Diagonalising the Majorana
Hamiltonian is hence compatible with restricting the possible states of the system to the
physical subspace L with eigenvalue +1 for all the Di operators. This condition can be
interpreted as a Gauss law. States that belong to the spectrum of the original spin system
need to be eigenstates of Hamiltonian (6.16) as well as satisfy the Gauss law constraint,
i.e.

H |Ψ〉 = E |Ψ〉 and Di |Ψ〉 = |Ψ〉 . (6.18)

There are two equivalent ways of finding the solution to these equations. Either we start
with the states that satisfy the Gauss law, i.e. belonging in the symmetric space L, and
then construct eigenstates of the Hamiltonian within L or we first find all eigenstates of
the Hamiltonian and then we symmetrise them in order to satisfy the Gauss law. In the
following we take the latter approach.
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tFig. 6.5
The application of a Di operator at a site changes by a − sign the ui j link eigenvalues around an
elementary loop. A given pattern of eigenvalues ui j = ±1 of the link operators gives a pattern of
vortices in terms of eigenvalues wp = ±1 of the plaquette operators. Two vortices are depicted
as grey disks where the plaquette eigenvalue is −1. All link eigenvalues are taken to be +1
except for the ones along a string connecting the vortices with values −1.

In the model considered here, the link operators ûi j are local symmetries, i.e.

[H, ûi j] = 0. (6.19)

Hence, one could imagine assigning patterns of eigenvalues ui j to the oriented links of the
lattice. Doing so, the Hamiltonian (6.16) becomes quadratic in c’s and can be diagonalised
directly. However, operators Di and ûi j do not share a common set of eigenstates as they
do not commute. In fact, they anticommute

{ûi j,Di} = 0. (6.20)

Sectors labelled by the eigenvalue patterns u = {ui j = ±1} are hence not part of L. In other
words, solving Hamiltonian (6.16) for a given pattern of ui j’s results in eigenstates that
do not necessarily satisfy constraint (6.9). On the other hand, the plaquette operators ŵp

become the products of the link operators

ŵp =
∏
i, j∈p

ûi j. (6.21)

Importantly, they still commute with the Hamiltonian and with the Di operators

[ŵp,H] = 0 and [ŵp,Di] = 0. (6.22)

Eigenstates of the plaquette operators can hence belong in the physical subspace L.
The above observation allows for the following lattice gauge theory interpretation. Con-

sider Figure 6.5. The eigenvalues {ui j = ±1} of the link operators can be thought of as a
classical Z2 gauge field. Taking this approach the operators Di perform local gauge trans-
formations on them. Indeed, applying Di to an eigenstate of all ûi j inverts the sign of the
eigenvalues of the link operators that are connected with the site i. Such an operation on an
initial ui j = +1 configuration of the oriented link operators is illustrated in Figure 6.5. The
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(a) Two sites of the honeycomb lattice with spins residing on them. (b) The Majorana
representation of the spins introduces four Majorana fermions for each spin, c, bx, by and bz. Link
operators ûi j = ibαi bαj correspond at each link (i, j). (c) Substituting the desired eigenvalue ±1 of
the link operators ui j reduces the model to a honeycomb lattice of tunnelling Majorana fermions
c.

application of a Di keeps the states in the same vortex sector. Moreover, the gauge invariant
plaquette operators ŵp can be identified with the Wilson loop operators. The eigenvalues
wp = −1 can hence be interpreted as having a π-flux vortex living on plaquette p. The
different physical sectors of the model are then equivalent to configurations of vortices,
that are created by fixing the gauge u, i.e. by the pattern of the eigenvalues of the gauge
field. There are many different patterns of u’s that correspond to the same w configuration,
so the function w(u) is a many to one function. The pattern of eigenvalues ui j = −1 can
be visualised as an unphysical string passing through the link (i j), that either connects two
vortices or belongs to a loop, as shown in Figure 6.5. The unphysicality follows from the
violation of constraint (6.9) by the link operator eigenstates |Ψu〉 that belong in a given
gauge sector u. To rectify this we perform the projection

|Ψw〉 = D |Ψu〉 , D =

N∏
i=1

(
1 + Di

2

)
. (6.23)

This projection produces normalised physical states that correspond to the vortex config-
uration given by the pattern of wp’s. We shall call such a configuration the vortex sector.
Due to the anti-commutation of Di and ûi j, the physical state |Ψw〉 ∈ L is an equal ampli-
tude superposition of all loops and strings compatible with the vortex sector w. It is worth
emphasising that the energy eigenvalues of the Hamiltonian are not affected by the sym-
metrisation of the states with the operator D. However, the properties we shall be focusing
on in the following do not need its application.

Our starting point in this section was the honeycomb lattice model with spins residing
at its sites, as indicated in Figure 6.6(a). The Majorana fermionisation introduced four Ma-
jorana fermions, c, bx, by and bz, at each site of the lattice, as shown in Figure 6.6(b).
Fixing the eigenvalues ui j = ±1 for each link removes the b operators completely from the
model. This step reduces the initial spin model to a honeycomb lattice model of tunnelling
Majorana fermions, as shown in Figure 6.6(c). In each sector parameterised by a certain
pattern of ui j’s, the model is equivalent to a problem of free Majorana fermions, whose tun-
nelling couplings depend on the underlying vortex configuration w(u). Their Hamiltonian
can hence be written as
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H =

i
4

∑
i, j

Ai jcic j, (6.24)

where the Aw(u)
i j ,

Aw(u)
i j = 2Ji jui j + 2K

∑
k

uiku jk, (6.25)

are now a set of real numbers. This Hamiltonian is much simpler to solve than the initial
one, which is given in terms of spins. To find its eigenvalues it only requires to diagonalise
the matrix Ai j. This matrix grows polynomially with the linear size of the system instead of
growing exponentially as the spin Hamiltonian does. The reason for this is that Hamiltonian
(6.24) describes non-interacting particles hopping along the sites of the honeycomb lattice
with tunnelling couplings given by Ai j in (6.25). Nevertheless, an exponential number of
matrices Ai j needs to be diagonalised to find the spectrum of the complete model, one
for each pattern of u eigenvalues. This will not be necessary as most of the physically
relevant questions that we address in the following can be answered using specific gauge
configurations.

6.2 Solving the honeycomb lattice model

In the previous section we employed the Majorana fermionisation method to simplify the
honeycomb lattice Hamiltonian. It allowed us to represent the two-spin and three-spin in-
teractions in terms of free Majorana fermions. These fermions were shown to be hopping
on the honeycomb lattice between nearest and next-to-nearest sites with tunnelling cou-
plings that depend on the ui j eigenvalues.

In this section we employ two different approaches in studying the honeycomb lattice
model. Initially, we take the continuum limit of the lattice Hamiltonian. This probes states
with small energies that correspond to wavelengths much larger than the lattice spacing
of the system. The resulting continuous Hamiltonian has a simple form. It corresponds
to a relativistic quantum field theory that reveals the topological properties of the model.
This methodology is also employed in the study of several other systems such as graphene
[129] and topological insulators [130]. Alternatively, one can perform direct diagonalisa-
tion of the Hamiltonian. This approach offers the possibility to obtain exact solutions for
relatively large system sizes. We shall consider a variety of vortex configurations aiming to
quantitatively study their anyonic character, such as their fusion and braiding properties.
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6.2.1 The no-vortex sector

First, let us consider the honeycomb lattice model in its Majorana form. As Ai j given in
(6.25) can be split in two terms, the Hamiltonian (6.24) can be written as

H = H1 + H2, (6.26)

where the nearest neighbour term, is given by

H1 =
i
4

∑
i j

2Jui jcic j, (6.27)

and the next-to-nearest term, is given by

H2 =
i
4

∑
i j

2K
∑

k

uiku jkcic j. (6.28)

The nearest neighbour hopping amplitudes are taken to be uniform and equal to J. More-
over, we focus on the case where all ui j along the orientation of Figure 6.4 are +1. This
case corresponds to the absence of any vortices. Due to a theorem by Lieb [131] it is known
that the lowest energy state of the model belongs to this vortex-free sector.

To proceed we employ a Fourier transformation applied initially to H1. The honeycomb
lattice is bi-colourable, so the smallest unit cell for which it becomes periodic comprises
of two neighbouring sites. Let us take them to be the white and black sites along the z link,
as shown in Figure 6.7. Here the Majorana modes are denoted by a and b, respectively.
Employing

ar =
∑

p
e−ip·rap, (6.29)

and a similar relation for br and cr, we have that

H1 =
i
4

2J
∑

r
ar(br+s1 + br+s2 + br+s3 ) + h.c.

=
i
4

2J
∑
r,p,p′

( ∑
α=1,2,3

e−ip·r−ip·(r+sα)
)
apbp′

=
i
4

2J
∑
p,p′

( ∑
α=1,2,3

e−ip·sα
)
a−pbp + h.c.. (6.30)

The vectors sα in this equation define the nearest neighbours of ar, as shown in Figure 6.7.
To simplify notation, we define ã = e−iπ/4a, b̃ = eiπ/4b and

f (p) = 2J
∑

α=1,2,3

e−ip·sα . (6.31)

Then the Hamiltonian H1 takes the form

H1 =
1
4

∑
p

f (p)ã†pb̃p + h.c.. (6.32)

The next-to-nearest neighbour interactions take the form
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on the lattice, as well as n1, ..., n6, which define the six next-to-nearest neighbours.

H2 =
iK
2

∑
r,p,p′

(
e−ip′·n1 − e−ip′·n2 + eip′·(n1−n2) − eip′·n1 + eip′·n2 − e−ip′·(n1−n2)

)
e−i(p+p′)·rcpcp′

=
1
4

∑
p

∆(p)(ã†pãp − b̃†pb̃p), (6.33)

where we defined

∆(p) = 4K
(
− sin p · n1 + sin p · n2 + sin p · (n1 − n2)

)
. (6.34)

The vectors nα denote the next-to-nearest neighbours of a certain site, as shown in Figure
6.7. Combining H1 and H2 we obtain

H =
1
4

∑
p

(ã†p b̃†p)
(

∆(p) f (p)
f (p)∗ −∆(p)

) (
ãp

b̃p

)
. (6.35)

Since this form of the Hamiltonian is rather simple, it is now straightforward to find the
eigenvalue of the energy for Majorana fermions with certain momentum by direct diago-
nalisation of the one-particle Hamiltonian

H(p) =

(
∆(p) f (p)
f (p)∗ −∆(p)

)
. (6.36)

Suppose K = 0 so that ∆(p) = 0. Then, the two eigenvalues of H(p) are given by

ε(p) = ±| f (p)| = ±
J
2

√
1 + 4 cos2

√
3px

2
+ 4 cos

3py

2
cos

√
3px

2
. (6.37)

This relation is known as the dispersion relation of the energy as a function of the mo-
mentum. The positive energy is called the conductance band and the negative energy the
valence band. Common as they might look, these energy eigenvalues possess a unique
property. They become zero, ε(p) = 0, for certain isolated values of momentum p known
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px and py. The upper surface corresponds to the positive sign and the lower surface to the
negative sign. In the plotted contour there are two independent Fermi points P+ and P−. Note
that in the case of a finite lattice system the momentum takes discrete values rather than the
continuous shown here.

as the Fermi points. Two independent such momenta are given by

P± = ±(
4π

3
√

3
, 0), (6.38)

as shown in Figure 6.8. The presence of Fermi points makes the low energy behaviour of
the honeycomb lattice model special. For example, it provides a powerful diagnostic tool
for determining the properties of the model. Finally, it can be shown that the spectrum
of Hamiltonian (6.35) consists of normal fermionic modes [132]. In other words, the free
particles of the theory are fermions. This property holds for any vortex configuration.

Continuous limit approximation

Hamiltonian (6.35) is an exact description of the infinite honeycomb lattice model with-
out vortices. To proceed we employ the continuum limit approximation. What states of
the model are well described by this method? Intuitively, eigenstates with small energy
are characterised by large wavelengths. In the limit of infinitely large wavelength, the lat-
tice spacing becomes negligibly small and the continuous picture can be employed safely.
However, the continuum limit method breaks down when high energy states are considered
where the lattice structure becomes energetically relevant.

The ground state, i.e. the lowest energy state, is the state in which the valence band is
fully occupied. This state therefore corresponds to the half filling of all negative fermionic
modes. Small energy fluctuations around the ground state are described by the Hamiltonian
(6.36) near its Fermi points. Fortunately, the low energy regime, which determines the
quantum phase of the system is the regime of applicability for the continuum limit method.

The behaviour of ε(p) for K = 0 and p near a Fermi point is given in Figure 6.9(a). This
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characteristic conical shape that emerges near the Fermi point, when K = 0 is depicted. It
corresponds to a linear dispersion relation that characterises the Dirac equation. (b) A non-zero
K gives rise to an energy gap between the valance and the conductance bands.

Figure focuses on one of the Fermi points of Figure 6.8. Notably, the dispersion relation
is linear with respect to the momentum, creating a cone similar to the behaviour of two-
dimensional massless Dirac particles. For that we expand the Hamiltonian near the Fermi
points by considering momenta P± + p, where p is very small. Keeping only first order in
the small parameters px and py we have

f (P+ + p) = −3J(px + ipy) + O(p2) and f (P− + p) = 3J(px − ipy) + O(p2). (6.39)

Substituting these in (6.36) gives the Hamiltonian a Dirac-like form

H+(p) = H(P+ + p) = 3J(−σx px + σy py) (6.40)

and

H−(p) = H(P− + p) = 3J(σx px + σy py), (6.41)

respectively.
Let us now consider the case where K is different from zero. Then we have

∆(P+ + p) = 6
√

3K + O(p2), ∆(P−) = −∆(P+). (6.42)

Interestingly, the K-term does not shift the position of the Fermi points as it does not
contribute any linear momentum term. It only creates an energy gap

∆ = 6
√

3K (6.43)

between the valence and the conductance bands, as shown in Figure 6.9(b). At this point
it is preferable to combine the two Hamiltonians, H+(p) and H−(p), together and treat the
two Fermi points as two different pseudo-spin components. In particular, we consider the
basis Ψ(p) = (ã+, b̃+, b̃−, ã−)T so that the Hamiltonian becomes

Htot(p) =


∆ −p 0 0
−p̄ −∆ 0 0
0 0 ∆ p
0 0 p̄ −∆

 = −σz ⊗ σx px + σz ⊗ σy py + 1 ⊗ σz∆, (6.44)
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to the geometry of the periodic momentum coordinates, px and py, and the sphere corresponds
to all possible orientations of n̂(p). The Chern number (6.48) determines how many times n̂(p)
covers the whole sphere when the momentum spans the whole torus.

where p = px + ipy and p̄ = px − ipy and where we absorbed the factor 3J by rescaling
the momentum. Since the matrices of the momentum terms satisfy the Clifford operator
properties {σz ⊗ σx, σz ⊗ σy} = 0 and (σz ⊗ σx)2 = (σz ⊗ σy)2 = 1 this Hamiltonian is in
the form of a Dirac operator with mass ∆.

The way the mass term appears in (6.44) gives the Hamiltonian some intriguing topo-
logical properties. To reveal them we verify that the matrices

Σ1 = σz ⊗ σx, Σ2 = σz ⊗ σy, Σ3 = 1 ⊗ σz, (6.45)

of Htot(p) satisfy the SU(2) algebra

[Σi,Σ j] = 2iεi jkΣk. (6.46)

Hence, we can write

Htot(p) = Σ · n(p), where Σ = (Σ1,Σ2,Σ3) and n(p) = (−px, py,∆). (6.47)

The vector n not only parameterises the Hamiltonian, but also its eigenstates.
Consider the normalised vector n̂ = n/|n|. This vector maps the torus to the unit sphere,

as shown in Figure 6.10. Indeed, the momentum is periodic in both px and py directions, so
it takes values on a torus. Moreover, all possible values of n̂ define a unit sphere. If ∆ , 0,
then this map spans the whole unit sphere once when all the values of the momentum
span the whole torus. Consider, for example the case ∆ > 0. When p = P+, then (6.42) and
(6.44) imply n̂ = (0, 0, 1) and the neighbourhood of P+ is mapped on the upper hemisphere.
Similarly, when p = P− then n̂ = (0, 0,−1) and the neighbourhood of P− is mapped on the
lower hemisphere. The region between the two Fermi points is characterised by |p| � ∆

for which the vector n̂ is oriented along the equator, as can be seen from (6.47). In this
case, the mapping of n̂ can be described by the Chern number [133]

ν =
1

4π

∫
dpxdpy

∂n̂
∂px
×
∂n̂
∂py
· n̂, (6.48)

which is equivalent to its previous definition (2.75). Here, the Chern number is the winding
number of the map shown in Figure 6.10. The above arguments show that the unit vector
defined from (6.47) gives

ν =
∆

|∆|
= sgn ∆ = ±1. (6.49)
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In other words, this topological number returns the sign of ∆. As the mapping is between
two surfaces, ν can be positive or negative corresponding to the relative orientations of the
surfaces that are spanned. The non-zero value of ν for K , 0 signals that Hamiltonian
(6.44) belongs to a topologically non-trivial class. As a consequence, the ground state has
a non-local order, that is not encountered in usual insulators. Indeed, for non-trivial Chern
numbers the vortices of the honeycomb lattice bind localised Majorana modes [134, 71].
This is the second time we encounter Majorana fermionic modes. Now they appear as a
collective effect that can be viewed as localised eigenstates of the Hamiltonian. In Section
6.3 it is shown that localised Majorana modes behave as Ising anyons. These general argu-
ments illustrate that non-Abelian anyons can emerge from the honeycomb lattice model. A
more direct study is presented in the following subsection.

6.2.2 Vortex sectors

The continuum approximation presented above allowed us to probe the no-vortex sector
and understand its behaviour. It revealed the fermionic character of the spectrum and an
energy gap that is present when K , 0. With this method we established the topological
character of the system by evaluating a non-trivial Chern number. We now probe various
configurations of vortices in order to understand their properties without using abstract
arguments. Our aim is to find quantitative results for finite system sizes that can be treated
numerically.

Finite lattice system

To study general vortex sectors, we define a finite lattice system with 2LxLy sites, where
the couplings u can assume any desired pattern. The Hamiltonian (6.24) generalises to

H =
1
4

(
c†b c†w

)
h
(

cb

cw

)
with h =

(
hbb hbw

h†bw −hT
bb

)
. (6.50)

Here, c†λ = (c†λ,1, . . . , c
†

λ,LxLy
) for λ = b,w and hbw and hbb are LxLy × LxLy matrices de-

scribing the nearest and next-to-nearest interactions, respectively (see Exercise 6.3). The
2LxLy × 2LxLy-dimensional matrix h is the corresponding one-particle Hamiltonian. The
eigenvalues ±Ei with Ei ≥ 0 and eigenvectors

∣∣∣ψ±i 〉 of h have a double spectrum

h
∣∣∣ψ±i 〉 = ±Ei

∣∣∣ψ±i 〉 , (6.51)

i.e. for every positive energy eigenstate there is a corresponding negative one. The fermionic
nature of the Hamiltonian (6.50) dictates that the ground state energy, E0, is given by the
occupation of all the negative energy states that can have a single fermionic occupancy.
This gives

E0 = −

LxLy∑
i=1

Ei

2
, (6.52)
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represented as having J = −1 at the links crossed by the grey line. To smoothly transport the
right vortex across a z link (i j) we parameterise its coupling as Ji j(s) = 1 − 2s/S with s ∈ [0, S ].

that can be evaluated when the spectrum (6.51) of h is known. Our aim is to keep the lattice
size large in order to estimate the properties of the system in the thermodynamic limit.

Vortex manipulation and low energy spectrum

In the previous section we demonstrated that when K is non-zero then there is a non-
zero energy gap above the ground state. So a finite energy is needed in order to create a
fermionic excitation. This gap is present in any vortex sector. Lieb’s theorem [131] also dic-
tates that creating vortices costs a finite amount of energy. We denote by ∆ f the fermionic
energy gap and by 2∆v the gap that corresponds to the creation of a pair of vortices. As
the vortices may interact, their gap is only defined in the asymptotic limit when all vortices
are well separated and their interaction becomes negligible. To understand the relation be-
tween vortices and fermionic excitations we need to transport vortices and move between
different vortex sectors.

From (6.21) we see that vortex configurations w = {wp} are created by arranging the link
parameters u = {ui j}. In order to manipulate w, one needs to locally manipulate u. This
can be done effectively through the tunnelling coupling configurations Ji j between neigh-
bouring sites (i, j) as well as Ki jk that corresponds to neighbouring sites (i, j, k). It can be
seen from Hamiltonian (6.16) that the ui j eigenvalues are paired with the local couplings
Ji j and Ki jk. Therefore, the gauge configurations correspond to local configuration of these
couplings. Manipulating these couplings instead of the pattern of u’s gives the ability to
transform the model in a continuous way. This provides an extension of the discrete trans-
formations that are possible when we restrict to only changing u.

By manipulating the J and K couplings we can simulate the transport of vortices in a
continuous way. Consider tuning the coupling configuration such that Jz = −1 on the d
successive z-links of the lattice, as shown in Figure 6.11. This amounts to creating two vor-
tices separated linearly by d links. By varying d we can study the spectral evolution of the
system as a function of the vortex separation. We can carry out the vortex transport “contin-
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uously”, if the sign of the coupling Ji j at the link d + 1 is reversed by taking Ji j = 1− 2s/S
with s ∈ [0, S ]. Moreover, if this protocol is carried out on a link between empty plaquettes
or plaquettes with two vortices, the resulting process corresponds to the creation or an-
nihilation of vortices, respectively. Under such tuning of couplings, the spectrum evolves
smoothly between states belonging to different vortex sectors.

To obtain the low energy spectrum of the total system, including vortices and fermions,
we evaluate the fermionic spectrum of the Hamiltonian with zero and two vortices, numer-
ically. The resulting energies are illustrated in Figure 6.12. We observe that in the absence
of vortices the system is characterised by an energy gap, ∆ f , in agreement with (6.43).
Such a gap is also there in the presence of vortices. But there are also fermionic modes that
appear when we insert vortices with energies close to zero, i.e. bellow the energy gap. It
appears that in the presence of 2n vortices, there are n such lowest lying modes in the spec-
trum. These modes acquire asymptotically zero energy when the vortices are separated. In
Figure 6.12 we see two states above the ground state that correspond to each zero mode
being occupied or empty. Hence, the diagonalised Hamiltonian takes the form

H =

 LxLy∑
i=n+1

Eib
†

i bi +

n∑
i=1

εd
i z†i zi −

 LxLy∑
i=n+1

Ei

2
+

n∑
i=1

εd
i

2


 , (6.53)

where bi and zi are fermionic annihilation operators [121]. We have renamed the n smallest
eigenvalues and the corresponding modes as εd

i and zi, respectively.
Let us define the states that correspond to the low energy modes of (6.53). Denote by

|Ψ0〉 the ground state of the no-vortex sector and by
∣∣∣ Ψnv

0

〉
the ground state of a vortex

sector with n vortices. Figure 6.12 shows the evolution of the lowest lying states in the
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Table 6.1 Quasiparticles as Ising anyons

Honeycomb lattice Ising model

Ground state ↔ 1, vacuum
Vortex ↔ σ, non-Abelian anyon

Fermionic excitation ↔ ψ, fermion

2-vortex sector relative to the ground state energy E0v
0 of the vortex-free sector. At large

d, the two states
∣∣∣ Ψ2v

0

〉
and z†1

∣∣∣ Ψ2v
0

〉
are degenerate with energies 2∆v above the vortex-

free ground state. They differ only by the occupation of the zero mode. As the vortices are
brought closer, the degeneracy is lifted due to the mode z†1 acquiring energy, i.e. εd

1 becomes
non-zero. As d → 0, the vortices are brought to the same plaquette which corresponds
to fusing them. It is indeed the interactions due to the microscopics of the model that
give finite energy to the fusion modes, thereby making the two states

∣∣∣ Ψ2v
0

〉
and z†1

∣∣∣ Ψ2v
0

〉
energetically distinguishable at small distances, d.

We observe that the energy corresponding to
∣∣∣ Ψ2v

0

〉
evolves to the energy of the ground

state |Ψ0〉 of the vortex-free sector. On the other hand, z†1
∣∣∣ Ψ2v

0

〉
evolves to b†1,p0

|Ψ0〉, the
first excited free fermion state in the vortex-free sector. Figure 6.12 also suggests that when
the vortex pairs are far from each other, εd

i,p0
takes the form

εd
1,p0
∼ ∆2v cos(ωd)e−

d
ξ . (6.54)

Here ω > 0 and ξ > 0 depend on the couplings J and K and parametrise the frequency
of the oscillations and the convergence of the energy, respectively. As a conclusion the
small energy of these modes decays exponentially with the vortex separation and it has an
oscillatory character [121, 122, 123].

Zero modes as fusion degrees of freedom

The distinct behavior of the two-vortex states
∣∣∣ Ψ2v

0

〉
and z†1

∣∣∣ Ψ2v
0

〉
in Figure 6.12 as d → 0

suggests that the occupation of the fermionic zero mode corresponds to the fusion channel
of the vortices. This implies the identifications of the honeycomb lattice states with the
Ising anyons given in Table 6.1. There, we identify the σ non-Abelian particles of the Ising
anyon model with the vortices that are accompanied by zero modes. The ψ’s correspond to
occupied fermionic modes. Then in accordance with the fusion rules (4.23), an occupied
zero mode means that the σ’s will fuse to a ψ, whereas an unoccupied mode implies that
the fusion will give the vacuum 1. Note that, while the whole spectrum is diagonal in
the basis of free fermions, the presence of vortices splits the fermions into two localised
Majorana modes that sit in the vortex cores. How such Majorana fermions can give rise to
Ising anyonic statistics is demonstrated in Section 6.3.

Due to fermionic parity conservation, there is no ground state degeneracy in the two
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vortex case. Hence, one needs to consider at least the four-vortex case. The interpretation
of Table 6.1 is further confirmed by the low-energy spectrum of such a four-vortex sector
[121]. When varying the separation of the two vortex pairs in a pair-wise fashion, we
obtain spectral lines similar to the ones given in Figure 6.12. Four Ising σ anyons have the
physically non-trivial two-dimensional fusion spacesM(4). The total fusion channel of the
four anyons can be either 1 or ψ. The spectral evolution shows that when vortices are fused,
then there are two nearly degenerate states (either z1 or z2 occupied) that become the first
excited state in the vortex-free sector. The states with neither or both zero modes occupied
become the ground state or the two fermion state, respectively. Therefore we can identify
these four states with the fusion space basis states as∣∣∣ Ψ2v

0

〉
: (σ × σ)1 × (σ × σ)2 → 1 × 1 = 1,

z†1z†2
∣∣∣ Ψ2v

0

〉
: (σ × σ)1 × (σ × σ)2 → ψ × ψ = 1,

(6.55)

and
z†1

∣∣∣ Ψ2v
0

〉
: (σ × σ)1 × (σ × σ)2 → ψ × 1 = ψ,

z†2
∣∣∣ Ψ2v

0

〉
: (σ × σ)1 × (σ × σ)2 → 1 × ψ = ψ.

(6.56)

Hence, the four-vortex fusion process is consistent with the Ising anyon description of the
vortices.

Non-Abelian statistics of vortices

We now demonstrate the non-Abelian statistics of the vortices. For that we transport the
vortices around each other in a continuous fashion and determine the corresponding evo-
lution as a geometric phase acting on the fusion space. Similar calculations have been
performed by using trial, instead of exact, wave functions for a variety of systems [30, 135,
136].

Consider four vortices created in pairs, one having the vacuum fusion channel and the
other having a fermionic fusion channel described by the basis (6.56). We now consider
the case where we transport one vortex from one pair around another vortex from the
other pair. To simplify our calculation we consider loops that do not span any net area in
position space. This is illustrated in Figure 6.13(a), where the dashed lines indicate the two
oriented parts C1 and C2 of the total path C = C−1

2 C−1
1 C2C1. The evolution along this path

is cyclic in the space of coupling configurations Ji j, where the transport is implemented.
The worldline description of the vortices is shown in Figure 6.13(b) that corresponds to
exchanging the vortices twice.

The behaviour of Ising anyons undergoing the described evolution is given in Figure
4.12(b). It predicts that the braiding evolution, or monodromy, is given by

B = e−
π
4 i

(
0 1
1 0

)
. (6.57)

We shall demonstrate that the geometric evolution that corresponds to the braiding of vor-
tices indeed reproduces this matrix. To numerically evaluate this evolution we need to em-
ploy a discrete version of the holonomy presented in Section 2.2.2. Let us reiterate the main
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tFig. 6.13 (a) The honeycomb lattice containing two vortex pairs. The four dashed arrows C1, C−1
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C−1
2 are the oriented parts of the path C along which the vortices are transported. (b)

C = C−1
2 C−1

1 C2C1 is topologically equivalent to a link.

ingredients. Consider a Hamiltonian H(λ) with n-fold degeneracy {|Ψα(λ)〉 , α = 1, . . . , n}
that depends on some parameters λ. When we vary λ adiabatically along a closed path C,
the evolution of the degenerate subspace is given by the holonomy [30]

ΓA(C) = P exp
∮

C
A · dλ, (Aµ)αβ(λ) = 〈Ψα(λ) |

∂

∂λµ
|Ψβ(λ)〉. (6.58)

Let us discretise the path C into T infinitesimal intervals of length δλ with λt denoting the
control parameter value at step t. Then we can write

ΓA(C) = lim
T→∞

P
T∏

t=1

[
1 + δλµAµ(λt)

]
. (6.59)

Discretising the derivative in Aµ(λ) we have

(Aµ)αβ(λt) =
1
δλµ
〈Ψα(λµt )

∣∣∣ Ψβ(λ
µ
t+1)

〉
− δαβ. (6.60)

Inserting this into the discretised holonomy (6.59), and grouping the states at step t to-
gether, we obtain

ΓA(C) = lim
T→∞

P
T∏

t=1

 n∑
α=1

|Ψα(λt)〉〈Ψα(λt)|

 . (6.61)

This is a convenient formula that gives the holonomy as an ordered product of projectors
onto the ground state space in the limit δλ→ 0 at each step t along the path C.

One can employ (6.61) to numerically extract the braiding matrix of two vortices by
changing the parameters {λ} = {Ji j,Ki jk} in discrete steps. We now consider the two states,
|Ψ1〉 and |Ψ2〉, corresponding to the single fermion fusion channel (6.56) of the vortices.
The fermionic nature of Hamiltonian (6.50) dictates that these states are given by the Slater
determinant [137] of the vectors

∣∣∣ψ−i 〉 denoted in (6.51). In [124] it was found that



122 Kitaev’s honeycomb lattice modelt
ΓA(C) ≈ B, (6.62)

within 1% accuracy for suitable parameter regimes. This provides a direct verification that
the vortices of the honeycomb lattice model are non-Abelian Ising anyons.

The numerical treatment can investigate the topological nature of the holonomy that
describes the braiding evolution. First, when the evolution corresponds to the trivial path
Co = C2C−1

2 C1C−1
1 , we obtain ΓA(Co) ≈ 1. Second, when the orientation of the braiding

is reversed, we obtain inverse evolution, i.e. ΓA(C−1) = ΓA(C)†. This follows from the
properties of the holonomies described in Section 2.2. Finally, the holonomy is not affected
by path deformations C → C′, i.e. ΓA(C) = ΓA(C′), as longs as the topology of the path
remains the same. All these properties are non-trivial as they only emerge after considering
the whole cyclic evolution.

For the evolution of the vortices to correspond to the holonomy ΓA(C) the adiabaticity
condition needs to be satisfied at all times and the states |Ψ1(λ)〉 and |Ψ2(λ)〉 need to be
degenerate. Nevertheless, these states might have a small energy splitting, ε, due to the in-
teractions between vortices. How can we assign ΓA(C) to the evolution of this system? The
adiabaticity condition ensures that no population will be transferred between two states,
if the evolution is slow enough with respect to their energy difference. What we know is
that the energy gap ∆f above |Ψ1(λ)〉 and |Ψ2(λ)〉 is much larger than their relative energy
difference ε. An evolution that is slow enough compared to ∆f will adiabatically eliminate
the rest of the states. However, if the same evolution is fast enough with respect to ε then
it will, in general, transform the Hilbert space of these two states. As long as their relative
energy splitting is much smaller than the gap above them, the adiabaticity condition is ex-
pected to hold in the transport of vortices and the states |Ψ1(λ)〉 and |Ψ2(λ)〉will effectively
behave as degenerate.

Given sufficient site addressability the presented method of tuning the couplings J can
implement vortex transport in a physical realisation of the honeycomb lattice model. The
above calculation provides exact predictions for such experiments in finite size systems.
Were the model ever employed for quantum information processing, these studies could be
used to predict the fidelities of quantum gates.

6.3 Ising anyons as Majorana fermions

The vortices of the honeycomb lattice model behave as Ising non-Abelian anyons. This
hypothesis is supported by the numerical study of the model described in the previous
section. Moreover, we found that the continuum limit of this model supports Majorana
modes. In particular, zero energy Majorana modes are expected to be bound on the vortices
[138, 139]. In this section we demonstrate that these Majorana fermions are responsible for
the Ising non-Abelian behaviour of the vortices [140, 141, 142]. It is worth noticing that
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tFig. 6.14 Four localised Majorana fermions γ1,..., γ4. They can be considered as the “real” and
“imaginary” decompositions of different sets of fermions, e.g. z1 = (γ1 + iγ2)/2, z2 = (γ3 + iγ4)/2 or
w1 = (γ1 + iγ3)/2, w2 = (γ2 + iγ4)/2.

the Majorana modes need to be localised in space to interpret the Majorana fermions as
Ising anyons. Only then we can attribute particle-like properties to them.

Consider a Majorana operator γ at a given position. Apart from the usual fermionic
anti-commutation relations its Majorana character is defined by the “reality” condition

γ† = γ. (6.63)

In other words, Majorana particles are their own antiparticles. Due to this property it is
not possible to define a local degree of freedom for an isolated Majorana mode. However,
two such modes localised at positions i and i + 1, regardless of how far separated they
are, can be combined to a complex fermion mode zi = (γi + iγi+1)/2. The occupation of
this mode is a non-local property of a Majorana pair. This scenario emerged in the case of
the honeycomb lattice vortices. While the spectrum of that model comprises of complex
fermionic modes, the presence of pairs of vortices split one such fermion into two localised
Majorana modes, like the ones described here.

Let us take four localised Majorana fermions γ1,..., γ4, as depicted in Figure 6.14. It
is possible to group them in different ways when writing down their Hilbert space. For
example, we can consider the two different fermionic representations

z1 = (γ1 + iγ2)/2, z2 = (γ3 + iγ4)/2 (6.64)

and

w1 = (γ1 + iγ3)/2, w2 = (γ2 + iγ4)/2, (6.65)

for the same four Majorana fermions. Conversely, we can define the Majorana fermions as
“real” and “imaginary” decompositions of fermionic modes. A consistent set of fermionic
anti-commutation relations is given by

{γi, γi} = 2δi j (6.66)

as well as

{zi, z
†

i } = 1 and {wi,w
†

i } = 1. (6.67)

It is interesting to note that the modes, z and w, that result from the γ Majorana fermions
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are not independent. As an example, one can show that

{z1,w1} =
1
2
. (6.68)

We first consider the fusion properties of these Majorana fermions aiming to derive
the corresponding F matrix. We assume that an even number of usual fermionic modes
fuse to the vacuum. This is the case, e.g. in a superconductor where two fermions are
combined to form a Cooper pair. The population states e.g. of the z fermions are given by
| i j〉z = | i〉z1

⊗ | j〉z2
with i, j = 0, 1, where z1 has i population and z2 has j. The operators

z†i zi or w†i wi project on the zero population states, while ziz
†

i or wiw
†

i project on states that
correspond to populated modes. We choose to be initially in the vacuum total fusion space
of the two fermionic modes. Then, either both modes z1 and z2 are empty or full. The same
applies to the w1 and w2 modes. The relevant states to the vacuum total fusion channel are
given by | 00〉z/w and | 11〉z/w.

We are now interested to write the states that are initially given in the basis z in terms of
states of the w basis. Consider the | 00〉z and | 11〉z states that satisfy

z†1z1 | 00〉z = 0, z1z†1 | 00〉z = | 00〉z , z†1z1 | 11〉z = | 11〉z , z1z†1 | 11〉z = 0. (6.69)

As the operators z1 and w1 do not anti-commute we can ask the question what is the z
population of the state (2w†1w1 − 1) | 00〉z. Calculating this we find

z†1z1(2w†1w1 − 1) | 00〉z = (2w†1w1 − 1)(1 − 2z†1z1) | 00〉z = (2w†1w1 − 1) | 00〉z , (6.70)

where we employed the relation [z†1z1,w
†

1w1] = (2w†1w1 − 1)(1 − 2z†1z1)/2. Hence,

| 11〉z = (2w†1w1 − 1) | 00〉z . (6.71)

This calculation stays the same even if we substitute z2 in the place of z1 and/or w2 in the
place of w1. But the operator w†1w1 projects the state | 00〉z onto | 11〉w. Hence, rewriting
(6.71) we have

| 11〉w =
√

2w†1w1 | 00〉z =
1
√

2
(| 00〉z + | 11〉z). (6.72)

The normalisation of the | 11〉w state is guarantied due to the right hand side of (6.72). We
can now employ {w1,w

†

1} = 1 to rewrite (6.72) as

√
2w†1w1 | 00〉z =

√
2(−w1w†1 + 1) | 00〉z =

1
√

2
(| 00〉z + | 11〉z), (6.73)

which implies

| 00〉w =
√

2w1w†1 | 00〉z = −
1
√

2
(| 00〉z − | 11〉z). (6.74)

Thus, from (6.72) and (6.74) we deduce that the a and b basis are related by the unitary
transformation

FM =
1
√

2

(
−1 1
1 1

)
. (6.75)

This matrix is the fusion matrix of the Ising model up to an exchange of the basis vectors.
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tFig. 6.15 (a) The exchange of two Majorana fermions, γi and γ j. (b) Four Majorana fermions γ1,..., γ4 give
rise to z1 = (γ1 + iγ2)/2 and z2 = (γ3 + iγ4)/2 fermions. When Majorana fermion γ1 is braided
around Majorana fermion γ3 then their non-Abelian unitary evolution is given by
U2 = e2iθγ1γ3 = e2iθ(z1z2 + z1z†2 + z†1z2 + z†1z†2).

Let us now turn to the braiding properties of Majorana fermions. For that consider the
clockwise exchange of two Majorana fermions γi and γ j as shown in Figure 6.15(a). The
most general unitary operator that can act on their state is given by

U = a1 + bγi + cγ j + dγiγ j, (6.76)

where a, b, c and d are general complex numbers. The unitarity condition UU† = 1

imposes the following equations

aa∗ + bb∗ + cc∗ + dd∗ = 1, ab∗ + ba∗ + cd∗ + dc∗ = 0,

ac∗ − bd∗ + ca∗ − db∗ = 0, −ad∗ + bc∗ − cb∗ + da∗ = 0. (6.77)

Moreover, as this evolution is meant to exchange γi and γ j, we should also haveUγiU
† ∝

γ j. This gives

aa∗ + bb∗ − cc∗ − dd∗ = 0, ab∗ + ba∗ − cd∗ − dc∗ = 0,

−ac∗ + bd∗ + ca∗ − db∗ = 0, ad∗ − bc∗ − cb∗ + da∗ , 0. (6.78)

Finally, it should beUγ jU
† ∝ γi giving

aa∗ − bb∗ + cc∗ − dd∗ = 0, −ab∗ + ba∗ − cd∗ + dc∗ = 0,

ac∗ + bd∗ + ca∗ + db∗ = 0, ad∗ + bc∗ + cb∗ + da∗ , 0. (6.79)

We can easily verify that there are two independent solutions to these equations. Either
a = d = 0 and b = c = eiφ/

√
2 or b = c = 0 and a = d = eiθ/

√
2. These solutions

correspond to two distinctive evolutionsU andU′,

U =
eiθ

√
2

(1 + γiγ j), U′ =
eiφ

√
2

(γi + γ j), (6.80)

respectively. The second one,U′, is Abelian asU′2 = ei2φ. The first one,U, corresponds
to a non-Abelian monodromy U2 = e2iθγiγ j. It is obtained when two Majorana fermions
that belong to different fermionic modes are braided. To analyse the action of U consider
the configuration in Figure 6.15(b) with four Majorana fermions γi, i = 1, ..., 4 giving rise
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process where γ1 braids around γ2 and γ3 in a clockwise fashion. Then γ2 and γ3 are fused
resulting to the particle α being either the vacuum or a fermion. Finally, γ1 braids
counterclockwise around α, which is described by the monodromy B2. The resulting evolution is
equivalent to the trivial one, i.e. B2B1 = 1.

to two fermionic modes z1 = (γ1 + iγ2)/2 and z2 = (γ3 + iγ4)/2. Exchanging γ1 and γ3

twice gives rise to the monodromy

U2 = e2iθγ1γ3 = e2iθ(z1z2 + z1z†2 + z†1z2 + z†1z†2). (6.81)

Up to the overall phase factor e2iθ this operator exchanges the states | 01〉z and | 10〉z or the
states | 00〉z and | 11〉z. Hence, it acts as a σx in either of these spaces, which is the expected
non-Abelian action of the Ising anyon monodromy.

Finally, we would like to obtain the exact value of the phase factor θ. To proceed, we
assume that when a Majorana fermion γ and a normal fermion ψ are exchanged clockwise
a phase factor i is acquired. This is in agreement with having two Majorana fermions being
the constituents of a usual fermion: when both of them are exchanged with a fermion their
total state acquires a factor i2 = −1 resulting from the two i contributions of each exchange
of the Majorana with the fermion.

To determine the phase, θ, of the non-Abelian braiding we consider the particular evo-
lution between three Majorana fermions, γ1, γ2 and γ3, as shown in Figure 6.16. Initially
γ1 braids around γ2 and γ3 in a clockwise fashion. Then γ2 and γ3 are fused and γ1 braids
around the fusion outcome of γ2 and γ3 in a counterclockwise fashion. The composite
evolution of these braidings should be equal to the identity as the total braiding procedure
is trivial. Indeed, the clockwise braiding between γ1 and the pair of γ2 and γ3 gives the
monodromy

B1 = U2
13U

2
12 = e2iθγ1γ3e2iθγ1γ2 = ei4θγ2γ3. (6.82)

The counterclockwise braiding of γ1 with the composite fermion α = (γ2 + iγ3)/2 is more-
over given by

B2 = 1 − 2α†α = iγ2γ3. (6.83)

This means the braiding evolution B2 gives 1 if the fermionic mode α is not occupied and
−1 if it is occupied. This is in agreement with the fact that the exchange of a Majorana
fermion with a normal one should give the phase factor i. As deduced from Figure 6.16,
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the product of the braiding evolutions B1 and B2 should be equal to the identity, i.e.

B2B1 = 1. (6.84)

Indeed, the worldline of γ1 in the left hand side of Figure 6.16 can be continuously de-
formed to give the right hand side. Relation (6.84) provides a non-trivial condition for the
value of the phase θ giving

θ =
π

8
. (6.85)

This is the same result as one obtains by solving the pentagon and hexagon identities for
the Ising model presented in Chapter 4.

Summary

To physically realise a given type of anyons we need to experimentally implement the cor-
responding topological model. An attractive proposal is Kitaev’s honeycomb lattice model
presented in this Chapter. It employs physically plausible two- and three-spin interactions
and gives rise to non-Abelian Ising anyons. This model shares many common features with
the ν = 5/2 fractional quantum Hall effect [106], the p-wave superconductors [105] and
certain topological insulators [130]. Hence, studying the honeycomb lattice model offers
an arena for addressing generic questions such as the interactions between vortices, the
resilience of topological behaviour and so on.

We studied this model by employing two techniques. First, we took the continuum limit
of the lattice, which resulted in relativistic Dirac fermions. This approach is similar to the
one followed in graphene [129]. When the effective Dirac system has an energy gap, then
the Chern number of the model acquires a non-trivial value. This signals that the model can
support anyons. As a second approach we employed numerical diagonalisations. This indi-
cated the presence of zero fermionic modes that correspond to Majorana fermions. When
studying the spectral evolution as a function of vortex separation, we observed interactions
between the zero modes at short distances. This property could be employed for the ex-
perimental identification of Majorana fermions by spectral measurements. The transport
of one vortex around another revealed their mutual non-Abelian statistics in the form of a
geometric phase.

The study of the honeycomb lattice model offers a better understanding of the physics
involved with topological models. The microscopic degrees of freedom such as the lat-
tice spins and their interactions provide the knobs to manipulate the emerging anyons and
realise their generation, braiding and fusion. This gives a recipe for the experimental imple-
mentation of topological quantum computation. While the braiding of Ising anyons alone
is not enough to generate a universal set of quantum gates adding interactions between
anyons, like the ones we identified here, can result in universality.
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Exercises

6.1 Consider a one-dimensional spin chain with interactions σz
iσ

z
i+1 and σx

i σ
x
i+1 +σ

y
iσ

y
i+1

alternating between pairs of spins, with arbitrary couplings. Diagonalise the Hamil-
tonian for finite periodic chains and in the thermodynamic limit by employing Ma-
jorana fermionisation.

6.2 Consider a honeycomb lattice of tunnelling electrons that models graphene. What are
the similarities and what are the differences of the continuum limit of the graphene
system compare to the continuum limit of the honeycomb lattice model of Majorana
fermions?

6.3 Derive the general form of the interactions (6.50).



7 Chern-Simons quantum field theories

Quantum field theory is the most efficient tool we have to describe elementary particles.
It is the backbone of the Standard Model that successfully explains electromagnetic, weak
and strong interactions. For example, quantum electrodynamics, which describes the inter-
actions between charged fermions mediated by photons within the field theory framework,
has been experimentally tested and verified to a high level of accuracy. This has established
quantum field theories as the definitive tool for studying high energy physics.

Apart from explaining the fundamental properties of matter, quantum field theories can
also provide an effective description of condensed matter systems. In Chapter 6 we saw that
the quantum field theory of Majorana fermions emerges from Kitaev’s honeycomb lattice
model. It is expected that the low energy behaviour of the fractional quantum Hall effect
can be efficiently described by certain quantum field theories, known as Chern-Simons
theories [143]. The fractional quantum Hall effect emerges in interacting two-dimensional
electron gasses at low temperature in the presence of a strong magnetic field. Due to its
complexity, this system evades exact theoretical analysis. An effective description with
Chern-Simons theories has nevertheless proven very fruitful in understanding its topologi-
cal properties.

Chern-Simons theories are topological quantum field theories in the sense that all their
observables are invariant under continuous coordinate transformations. In other words, rel-
ative distances, and subsequently local geometry, do not play a role in these theories. This
makes the resulting interactions rather special: meaningful quantities are functions only
of global topological characteristics. Unlike usual electromagnetic interactions their effect
does not depend on the relative position of charges. It is rather similar in nature to the
Aharonov-Bohm effect that emerges when topologically non-trivial evolutions take place.
This is exactly the framework that gives rise to anyonic particles. Indeed, Chern-Simons
theories provide yet another model that supports Abelian as well as non-Abelian anyons
with their own fusion rules and braiding properties.

The relation between Chern-Simons theories and the fractional quantum Hall effect is
the subject of current theoretical and experimental research. Here we do not aim to analyse
this relation, but we present the Chern-Simons theories and their anyonic content in detail.
Studying these theories opens the way to the next Chapter that deals with the efficient
evaluation of topological invariants of links with quantum algorithms.

In the following we initially present the Abelian Chern-Simons theories. Using classical
and quantum mechanical arguments we demonstrate that their sources behave as Abelian
anyons. Subsequently, non-Abelian Chern-Simons theories are analysed. The fusion and
braiding properties of their sources are presented and it is shown that they correspond to a
discrete, infinite family of non-Abelian anyonic models.



130 Chern-Simons quantum field theoriest
7.1 Abelian Chern-Simons theory

The Abelian Chern-Simons theory arises as a possible generalisation of electromagnetic
theory when spacetime is reduced from four to three dimensions. It gives a simple formal-
ism, where particles with Abelian anyonic statistics emerge. These anyons are manifested
in the form of sources that interact through the Chern-Simons gauge field. Intriguingly,
quantum amplitudes that describe anyonic evolutions are actually given in terms of simple
topological invariants of links.

7.1.1 Four-dimensional electromagnetism

It is instructive to start from the usual electromagnetism in three spatial and one time
dimensions. In our analysis we employ the action, which is equivalent to the Hamiltonian
formalism. In particular, we are concerned with the behaviour of the theory in the presence
of external sources. From the stationary property of the action we can derive the classical
equations of motion, i.e. Maxwell equations. From the path integral formulation we then
obtain quantum amplitudes that describe evolutions of external sources.

The action of the four-dimensional electromagnetic field coupled to currents and charges
is given by

I4d
EM[A] =

1
2

∫
d4x

(
E2 − B2 + A · J + A0ρ

)
. (7.1)

Here E and B are the electric and magnetic fields, respectively, J is the charge current, ρ
is the charge density and x = (t, x) = (x0, x1, x2, x3) parameterises spacetime. The fields
couple to the current and the charge via the corresponding vector potential A that satisfies
B = ∇ × A and the scalar potential A0 that satisfies E = −∇A0. This homogeneous and
isotropic action is the most general one that is Lorentz and gauge invariant [144]. The
resulting equations of motion are given by

∇ · E = ρ, ∇ × B −
∂E
∂t

= J. (7.2)

Together with the identities

∇ · B = 0, ∇ × E +
∂B
∂t

= 0, (7.3)

they constitute Maxwell equations. Maxwell equations describe the interactions between
charges and currents mediated by electromagnetic fields. In particular, they give rise to the
long range Coulomb interaction between two charges at distance r that scales as 1/r2. This
long range behaviour of the electromagnetic interactions is a result of the massless nature of
the gauge field (A0,A). The absence of any mass term of the gauge field in the action (7.1)
is imposed by the invariance under gauge transformations of the form A0 → Aω

0 = A0 +∂tω

and A→ Aω = A+∇ω, whereω is an arbitrary scalar function. We have seen in Subsection
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2.1.2 that electromagnetism can give rise to topological interactions. For that we need to
arrange charges and fluxes, so that the Aharonov-Bohm effect emerges. In practice, it is
hard to mechanically isolate the topological from the direct interactions.

7.1.2 Three-dimensional electromagnetism

Reducing the spatial dimensions from three to two actually allows the electromagnetic the-
ory to have a richer structure. Let us look for the most general form of Maxwell equations
in three dimensions, with coordinates x = (t, x) = (x0, x1, x2), where space is considered
as a flat plane. In this case the electric field has only two components, E = (E1, E2), which
are parallel to the two-dimensional plane. The magnetic field is only a scalar, B, that cor-
responds to the third component of the magnetic field if it were thought to emerge from
three spatial dimensions. Still the vector potential is a vector A = (A1, A2). In two spatial
dimensions the curl of a vector V = (V1,V2) becomes a scalar,

∇ × V =
∂V2

∂x1 −
∂V1

∂x2 , (7.4)

and the curl of a scalar, S , becomes a vector,

∇ × S =

(
∂S
∂x2 , −

∂S
∂x1

)
. (7.5)

The most general Lorentz and gauge invariant action in three spacetime dimensions that is
also homogeneous and isotropic is given by

I3d
EM[A] =

1
2

∫
d3x

(
E2 − B2 + A · J + A0ρ + mε µνρAµ∂νAρ

)
. (7.6)

We notice now that an additional m-term is allowed. This is the Chern-Simons action given
by

ICS =
m
2

∫
d3 xε µνρAµ∂νAρ. (7.7)

This action does not depend on a metric that would have introduced a measure of distance
in the Chern-Simons theory. Such a metric gµν is present in (7.6) as, for example, it is used
in E2 = gµνEµEν. Instead, the three-dimensional Levi-Civita symbol ε µνρ is employed in
(7.7), whose indices run through 0, 1 and 2. The Levi-Civita symbol is equal to zero if
two or more indices are equal to each other, 1 if the indices are any cyclic permutation of
(0, 1, 2) and −1 otherwise. This object and consequently the Chern-Simons action is man-
ifestly invariant under coordinate transformations. The independence on relative distances
is a defining characteristic of a topological quantum field theory. Finally, due to the reduced
dimensionality this action is invariant under gauge transformations of the vector potential
A (see Exercise 7.1).

The additional m-term in (7.6) gives rise to massive “photons”, where m is a constant
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with the dimensions of a mass. Indeed, the m-term makes the theory similar to a quantum
field theory of massive fields [145]. Unlike the case of massless photons the fields in the
massive case decay exponentially fast, e−mr. This short range behaviour is also encountered
in the weak interactions of the Standard Model which are mediated by the Z or W massive
bosons. The exponential damping of the interactions restricts both fields E and B to take
non-trivial values only at the immediate neighbourhood of the sources. It is a particular
characteristic of the mass term (7.7) that, due to the presence of the derivative, the field A
can still take large values away from the sources, much like in the Aharonov-Bohm effect.

7.1.3 Abelian anyons and topological invariants

To present how Abelian anyons emerge in the Abelian Chern-Simons theories we employ
two approaches. First, with simple classical arguments we show how charged sources are
necessarily accompanied by flux. This charge-flux composition is responsible for the any-
onic behaviour of the sources. Then we employ a quantum approach that gives equivalent
results through a very different line of reasoning. Its purpose is to establish the connection
between the Chern-Simon theories and topological invariants of links. Later on we use the
same quantum approach to study non-Abelian Chern-Simons theories.

Classical approach

To classically analyse the model we derive the equations of motion corresponding to the
action (7.6). The resulting three-dimensional Maxwell equations are given by

∇ × E +
∂B
∂t

= 0, (7.8)

∇ · E + mB = ρ, (7.9)

∇ × B −
∂E
∂t

+ m
(

E2

−E1

)
= J. (7.10)

In particular, let us consider (7.9). It dictates that apart from the usual electric field a mag-
netic field is generated from the static charge density ρ. Both, the electric and magnetic
fields, are exponentially localised near charges. In fact, if we neglect the electric field term,
we see that the magnetic field exactly follows the distribution of the charge density, ρ. By
integrating (7.9) over the whole space we have∫

d2x∇ · E + m
∫

d2xB =

∫
d2xρ. (7.11)

Due to Stokes’s theorem the first integral becomes a line integral of the electric field at
the boundary. As the field E does not extend to large distances away from the sources this
integral gives zero. The second integral is the total flux Φ that is confined at the position of
the source. The right hand side is the total charge Q. As a conclusion, for m , 0 we have

Φ =
Q
m
, (7.12)
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which shows that every charged particle carries a magnetic flux. When m = 0, the mecha-
nism of attaching flux to charged particles does not exist.

The emerging flux (7.12), which accompanies the charge Q, is due to a background
magnetic field that is allowed to take a non-zero value at the position of the charged source.
In other words the flux Φ does not correspond to magnetic dipoles that get transported with
the charge. This behaviour is different from the flux and charge of composite anyons who
we met in Subsection 2.1.3. There, the flux solenoids were created from magnetic dipoles
that could acquire phases from the Aharonov-Bohm effect if they were transported around
charges.

From (7.12) we see that the Chern-Simons term enables a specific flux to be assigned to
every charged particle. At the same time it neutralises direct, position dependent interac-
tions between charges by making them short range. These properties define the statistics
of sources in I3d

EM. Consider two identical sources 1 and 2, which are described by disks
with homogeneously distributed charge Q. We want to determine the quantum evolution
resulting from braiding source 1 around source 2. If these sources are kept far apart the
only contribution to the quantum evolution of their state is topological in nature, due to the
Aharonov-Bohm effect. A circulation, which corresponds to two braidings of such parti-
cles, hence gives the phase factor

2ϕ = QΦ =
Q2

m
, (7.13)

where ϕ is the statistical angle. Due to the spin-statistics theorem each source carries spin
(see Exercise 7.2)

s =
Q2

4πm
. (7.14)

From (7.13) and (7.14) we see that the Chern-Simons theories can support anyons with
arbitrary statistics as the parameter m can take any value.

Quantum approach

The anyonic properties of charges can also be revealed with a quantum treatment of the
Abelian Chern-Simons theories. This approach illuminates the role topological invariants
play in Chern-Simons theories. To show that, we adopt the Euclidean spacetime region M,
shown in Figure 7.1. This region is taken in general to have trivial topology with boundary
∂M positioned far from the worldlines of the particles. Suppose we want to develop the
quantum field theory of a U(1) gauge field with components A = (A0, A1, A2). To do so we
focus on the Abelian Chern-Simons action

ICS[A] =
m
2

∫
M

d3xε µνρAµ∂νAρ, (7.15)

which is invariant under continuous coordinate reparameterisations and gauge transforma-
tions.

To obtain information about the system we need to identify the appropriate observable
operators and evaluate their expectation value. To respect the symmetries of the Chern-
Simons theories, these operators need to be gauge invariant and they should not depend on



134 Chern-Simons quantum field theoriest

! 

C1

! 

C2
! 

M

tFig. 7.1 The three-dimensional Euclidean space M, where particle worldlines form a link. Two loops C1

and C2 are shown for which Wilson lines can be defined. This diagram can be interpreted as four
particle sources that are pairwise created from the vacuum, one source from one pair is braided
around another source from the other pair and then the sources are fused back to the vacuum.

a metric. The product of Wilson loops

W(L) =

r∏
i=1

exp
(
iQi

∮
Ci

A
)
, (7.16)

serves this purpose well. It corresponds to the looping trajectories Ci of particles parame-
terised by i with charge Qi, where i = 1, ..., r. These trajectories, defined inside the region
M are collectively denoted as L. They can be interlinked, as the example in Figure 7.1 il-
lustrates. Note that requiring the theory to be invariant under global gauge transformations
of the gauge field demands that the charges Qi are integer numbers [146].

In the path integral formulation the expectation value of the Wilson loops, W(L), is given
by

〈W(L)〉 =
〈ψ0 |W(L) |ψ0〉

〈ψ0|ψ0〉
=

∫
DAW(L)eiICS[A]∫
DAeiICS[A]

, (7.17)

where |ψ0〉 is the vacuum state. The functional integral
∫
DA is taken with respect to

configurations of the gauge field, A, throughout M that are gauge inequivalent. This ex-
pectation value can be interpreted as the amplitude of the process associated to the link
L, such as the one depicted in Figure 7.1. There, particles are created in pairs from the
vacuum, propagated along the worldlines C1 and C2 and then fused to the vacuum so that
the worldlines correspond to the link configuration L.

To evaluate the expectation value 〈W(L)〉 we interpret the Wilson loops in terms of cur-
rents. Consider a single loop C spanned by a particle with charge Q. We parameterise the
loop by s with 0 ≤ s ≤ 1, so that yµ(s) runs once through the loop C. Then we can write

Q
∮

C
dxµAµ(x) =

∫
M

d3xJµ(x)Aµ(x), (7.18)

with

Jµ(x) = Q
∫ 1

0
ds ẏµ(s)δ(x − y(s)). (7.19)
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The delta function restricts the integration argument x to be on the points y(s) of C. The in-
tegration along s together with ẏµ(s) become the line integral present in (7.18). To evaluate
the functional integral (7.17) we expand the gauge field as

Aµ(x) = A′µ(x) + Ãµ(x), (7.20)

where A′µ(x) can take any arbitrary field configuration, while Ãµ(x) is a specific classical
configuration. So in the functional integral we haveDA = DA′. The classical field config-
uration is taken to satisfy the Maxwell equations (7.9) and (7.10), i.e.

mε µνρ∂νÃρ(x) = −Jµ(x), (7.21)

with J0 = −ρ and (J1, J2) = J. This condition helps to decouple the contribution of the
sources and thus simplifies the calculation. Substituting (7.20) in (7.17) we have∫

DAW(L)eiICS[A]∫
DAeiICS[A]

= exp
(

i
2

∫
M

d3xJµ(x)Ãµ(x)
)
, (7.22)

where the functional integrals in the numerator and denominator cancel out. Hence, to
evaluate 〈W(L)〉 we need to determine Ãµ(x). A solution of equation (7.21) is given by
[147]

Ãµ(x) = −
Q

4πm

∫ 1

0
ds ε µνρẏν(s)

(x − y(s))ρ

|x − y(s)|3
, (7.23)

where yµ are the Euclidean coordinates of the loops in M.
The product of Wilson loops, W(L), gives rise to several currents, one for each path Ci.

In the presence of many currents the total field configuration Ã that satisfies (7.21) is given
by the sum of the corresponding fields produced from each current. This implies that∫

M
d3xJµ(x)Ãµ(x) = −

1
4πm

∑
i, j

QiQ j

∮
Ci

dxµ
∮

C j

dyνε µνρ
(x − y)ρ

|x − y|3
. (7.24)

As a conclusion, the expectation value of the Wilson loops is given by

〈W(L)〉 = exp

 i
2m

∑
i, j

QiQ jΦ(Ci,C j)

 , (7.25)

where Φ(Ci,C j) is the Gauss integral given by

Φ(Ci,C j) =
1

4π

∮
Ci

dxµ
∮

C j

dyνε µνρ
(x − y)ρ

|x − y|3
. (7.26)

Hence, we managed to write the expectation value of the Wilson loops in terms of a familiar
quantity, the Gauss integral. This integral is a well defined integer when the loops Ci and C j

do not intersect [147]. It is the topological invariant of the linking between the two loops,
i.e. it counts the number of times Ci winds C j. For example, the two links in Figure 7.1
have

Φ(C1,C2) = ±1, (7.27)

where the sign depends on the relative orientation of the loops. The topological character
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tFig. 7.2 (a) The framing of a string is defined by infinitesimally displacing the original string, C, to create
a new string, C′. Both strings together define the edges of a ribbon. (b) A twist is well defined
with a ribbon and it gives a non-trivial linking between the two strings, C and C′.

of the Gauss linking number, Φ(Ci,C j), results from the independence of the action and of
the Wilson loops on the metric.

As the Wilson loops correspond to currents of charges, equation (7.25) can be interpreted
as describing the behaviour of sources. For example, entangled loops correspond to braided
sources. Hence, the closed form of 〈W(L)〉 given in (7.25) can reveal the anyonic character
of the sources. Following Figure 7.1 we see that the quantity 〈W(L)〉 is the expectation
value of four sources being pairwise generated from the vacuum then one source from one
pair is braided with the source from the other pair, and then they are fused back to the
vacuum. Let us denote the trivial link that corresponds to two disentangled loops as L0.
Then, according to (7.27), the braiding operation gives the phase factor

〈W(L)〉 = exp
(
i
Q2

m

)
〈W(L0)〉, (7.28)

where the summation in (7.25) gave two contributions. Hence, the sources have anyonic
mutual statistics, which is in agreement with (7.13).

Close inspection shows that (7.25) is not well defined when i = j, as the points x and y in
the denominator can coincide. To resolve this problem we adopt the framing prescription
[68]. According to this prescription we take every link component, Ci, and slightly displace
it along a given direction, thus producing a new link component C′i , as shown in Figure
7.2(a). The methodology we adopt, is to substitute each term with i = j with two such
distinguishable loops, Ci and C′i , for which the Gauss linking number is well defined. The
resulting structure is a ribbon made out of the two loops Ci and C′i .

The framing procedure does not only resolve the mathematical ambiguity of (7.25),
but also introduces spin degrees of freedom that make the Chern-Simons theories self-
consistent. Indeed, the ribbons provide the means to identify possible twists which cannot
be registered by a string.

Consider the expectation value 〈W(L)〉. When a single ribbon with boundaries C and C′

is twisted by 2π, then the linking number between the distinguishable links C and C′ is
changed by one, as shown in Figure 7.2(b). From (7.25) a phase change in the Wilson loop
expectation value is recorded such that

〈W(C′)〉 = exp
(
i
Q2

2m

)
〈W(C)〉. (7.29)
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This corresponds to having particles with spin

s =
Q2

4πm
, (7.30)

in agreement with (7.14).
The above analysis shows that the braiding between sources can be efficiently described

by the expectation value of Wilson loops. This expectation value corresponds to the ampli-
tude of anyonic sources which are pairwise created from the vacuum, evolved along world-
lines that correspond to the loops of the Wilson operators and afterwards fused back to the
vacuum. The evaluation of this amplitude demonstrates that the sources of the Abelian
Chern-Simons theories have anyonic statistics.

7.2 Non-Abelian Chern-Simons theories

Our study of non-Abelian Chern-Simons theories follows the approach we took in the
Abelian case in terms of expectation values of Wilson loop operators. Unlike the Abelian
case, gauge invariance of the non-Abelian theories is not identically satisfied. To restore
gauge invariance the coupling of the theory needs to be quantised. We then concentrate
on the anyonic properties of source-particles, identify their fusion rules and illustrate their
non-Abelian statistics [68, 148].

7.2.1 Non-Abelian gauge theories

As a first step we define the action of the non-Abelian Chern-Simons theories and inves-
tigate some of its basic properties. The central result of this subsection is that demanding
gauge invariance of the action restricts the theories to a discrete, but infinite set.

Non-Abelian Chern-Simons action

The non-Abelian version of the Chern-Simons theories is based on a Lie group G with
elements that do not all commute with each other. I.e. for two elements g, h ∈ G it is in
general gh , hg. Consider the generators of this group given by the Hermitian matrices
T a for a = 1, ..., n. A general element, g ∈ G, is given by g = exp(iλaT a) for some real
parameters λa. The generators satisfy the Lie algebra commutation relations

[T a,T b] = i f abcT c, (7.31)

where a summation is assumed over all n values of the repeated index c. The parame-
ters { f abc} are the structure constants of the Lie algebra. These matrices satisfy the trace
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condition

tr(T aT b) =
1
2
δab. (7.32)

There are many matrix representations of the Lie algebra that can satisfy (7.31) and (7.32)
of different dimension. Later on we consider these representations in more detail. The
vector potential of the theory is defined by

Aµ(x) = Aa
µ(x)T a. (7.33)

Hence, A is a vector defined in the three-dimensional Euclidean space M with components
that are Hermitian matrices.

The action of the gauge field is given by

ICS[A] =
k

4π

∫
M

d3x ε µνρ tr
(
Aµ∂νAρ + i

2
3

AµAνAρ

)
, (7.34)

which can also be written as

ICS[A] =
k

8π

∫
M

d3 x ε µνρ
(
Aa
µ∂νA

a
ρ −

1
3

f abcAa
µAb

νA
c
ρ

)
. (7.35)

This expression coincides with the Abelian case when f abc = 0, when the field Aa
µ has only

a single algebra component, i.e. n = 1, and when k = 4πm.

Gauge invariance

Compared to their Abelian counterparts, non-Abelian gauge fields allow for more complex
gauge transformations of the form

Aµ → AU
µ = U†AµU − iU†∂µU, (7.36)

where U(x) ∈ G. Apart from the addition of a term, U†∂µU, the vector potential obtains a
conjugation with the group element U that is purely a result of the non-Abelian character
of the group G. Under this gauge transformation the action ICS[A] becomes

ICS[AU] = ICS[A] + i
k

4π

∫
M

d3xε µνρ∂µtr
(
∂νUU†Aρ

)
+

k
12π

∫
M

d3xε µνρtr
(
U†∂µUU†∂νUU†∂ρU

)
. (7.37)

The second term on the right hand side is an integral of a total derivative. Hence, it becomes
a surface integral which vanishes when A is zero at the boundary of M. The last term is
proportional to the winding number ω[U] of the gauge transformation U(x) which is given
by

ω[U] =
1

24π2

∫
M

d3xε µνρtr
(
U†∂µUU†∂νUU†∂ρU

)
. (7.38)
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The winding number ω[U] is an integer that counts how many times the gauge transfor-
mation U spans the whole group, G (see also Example II). It is topological in nature and
invariant under smooth deformations of U(x).

Let us investigate some of the properties of the winding number, ω[U]. Consider the
gauge transformation U(x) as a function of the three-dimensional coordinate x. For U(x)
to be a permissible gauge transformation it has to have a constant value when x is taken to
infinity. Hence, we choose

lim
|x|→∞

U(x) = 1, (7.39)

without loss of generality. As the gauge group elements U(x) is defined throughout the
whole three-dimensional space R3 including infinity, its argument space is equivalent to
the three-dimensional sphere, S 3. It hence provides a mapping from S 3 to the parametric
space of the group G. For non-Abelian compact gauge groups such a mapping can be
labelled by an integer number that counts how many times the mapping winds around the
group G when the whole S 3 is spanned. For a given U(x) we thus have that

ω[U] = n, (7.40)

where n is the winding integer. This number is characteristic of the group element U(x)
and cannot be changed by local continuous coordinate transformations. This is expected,
as the definition of ω[U] does not involve the metric.

As a result of the above analysis we see that the non-Abelian Chern-Simons action (7.34)
acquires an additional term when the field Aµ(x) is gauge transformed [150]. In particular,
a gauge transformation U(x) with winding number ω[U] = n gives

ICS[AU] = ICS[A] + 2πkn. (7.41)

A gauge theory is deemed physical, if the expectation values of its observables are gauge
invariant. In view of (7.17) we require that exp(iICS[A]) is gauge invariant under a gauge
transformation. The necessary condition for that is

k : integer. (7.42)

This means, every non-Abelian Chern-Simons theory is parameterised by a coupling k
that only takes integer values. The coupling k is also known as the level of the theory. A
quantisation condition like the one in (7.42) was not present in the Abelian case.

7.2.2 Wilson loops and anyonic worldlines

We now want to evaluate the expectation value of a non-Abelian Wilson loop operator with
an arbitrary link configuration. For concreteness we consider the group SU(N). The Wilson
loop takes the form

W(C) = tr
[
P exp

(
iQ

∮
C

T aAa
µdxµ

)]
, (7.43)
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where the trace is taken with respect to the representation of the gauge field Aµ, and P is
the path ordering symbol. The coupling constant Q = 2 j is an integer (see Example III).
For convenience we define T a

( j) = 2 jT a, where T a is an element of the (2 j+1)-dimensional
representation of the su(N) algebra that we denote as R j. The N-dimensional representation
of SU(N) is called fundamental.

The Wilson loop is gauge invariant. Indeed, under the gauge transformation (7.41) we
have

P exp
(
i
∮

C
T a

( j)A
a
µ

Udxµ
)

= U(x0)†P exp
(
i
∮

C
T a

( j)A
a
µdxµ

)
U(x0), (7.44)

where x0 is the base point where the path C begins and ends. Taking the trace of (7.44)
cancels the U(x0) dependence, thus making W(C) invariant under gauge transformations.
Consider the expectation value of a product of Wilson loops

〈W(L)〉 =

∫
DA

∏r
i=1 tr

[
P exp

(
i
∮

Ci
T a

( j)A
a
µdxµ

)]
eiICS[A]∫

DAeiICS[A]
. (7.45)

The A integration is with respect to all fields that are not gauge equivalent to each other
as the integrant is manifestly gauge invariant. Moreover, we restrict the integration to the
gauge field configurations that satisfy the classical version of the Gauss law. Hence, A
corresponds to a non-Abelian magnetic field Ba = ∂1Aa

2 − ∂2Aa
1 − f abcAb

1Ac
2, which is

zero everywhere apart from the position of the loops Ci, where sources in the form of the
representations R are present [68].

Much like in the Abelian case, we can view the expectation value of Wilson loops as the
expectation value of the evolution of non-Abelian anyons. In this picture, the worldlines of
the anyons correspond to the paths Ci of the Wilson loops. The type of anyon that traverses
each loop Ci corresponds to the representation Ri of the Wilson loop W(Ci). To establish
this interpretation we choose the space M to be a spacial disk Σ that extends from t = −∞

to t = +∞, as shown in Figure 7.3. Relation (7.45) then gives the quantum mechanical
expectation value of the process where particles are created from the vacuum state |ψ0〉 on
the disk Σ, then they are evolved so that their worldlines traverse the link L and fuse to the
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vacuum channel. In other words we have

〈W(L)〉 = 〈ψ0 | U(t = −∞, t = +∞) |ψ0〉 , (7.46)

where the unitaryU(t = −∞, t = +∞) corresponds to the evolution operator of the anyons.
A slice Σ0 of space M at t = 0 gives a particular configuration of sources, as shown in

Figure 7.3. Assume that Σ0 cuts the loops at the points Pi, with each of them corresponding
to a Wilson loop in representation Ri. The points Pi can be interpreted as the positions of
the sources at time t = 0 and the representations Ri can be interpreted as their charge. In
the following we determine the fusion and braiding properties of these sources, thereby
demonstrating that they behave as non-Abelian anyons.

Sources, representations and fusion rules

We now determine the fusion properties of the sources of the non-Abelian Chern-Simons
theories. For that we first introduce some basic elements of representation theory [149]. We
then present the composition relation of representations. Finally, we establish how these
relations apply to the case of the Chern-Simons theory. In particular, we show that the
number of distinct representations in a given theory is fixed by the Chern-Simons coupling
k. This fixes the number of possible anyonic species supported by the theory as well as
their fusion rules.

A representation of a group G assigns to every element g ∈ G a square complex matrix
R(g) of a given dimension that preserves the group multiplication structure

R(g1g2) = R(g1)R(g2). (7.47)

Each matrix describes a linear transformation acting on a vector space. The elements of
this space can be viewed as column vectors of the appropriate dimension. A matrix rep-
resentation and its corresponding vector space have equivalent properties related to their
tensor product and its decomposition.

As a concrete example we take the SU(2) group. Physically, this group can describe
angular momentum or spin transformations. The generators of SU(2) satisfy the algebra

[Ja, Jb] = iεabcJc. (7.48)

As the total angular momentum operator J2 = J2
1 + J2

2 + J2
3 commutes with J3 we can

denote their common eigenstates as
∣∣∣ j,m j

〉
. These satisfy

J2
∣∣∣ j,m j

〉
= j( j + 1)

∣∣∣ j,m j

〉
and J3

∣∣∣ j,m j

〉
= m j

∣∣∣ j,m j

〉
. (7.49)

Here j is a non-negative integer or a half-integer and the corresponding m j is an integer
or half-integer, respectively, that takes values between − j ≤ m j ≤ j in integer steps. An
SU(2) Chern-Simons source described by a representation with a given j has an associated
(2 j+1)-dimensional Hilbert space generated by the orthonormal basis states

∣∣∣ j,m j

〉
, which

are parameterised by m j. The j = 0 with m j = 0 case is assigned to the vacuum, for which
the corresponding representation is the trivial one-dimensional matrix.

To describe the presence of two sources, 1 and 2, we need to employ the tensor product



142 Chern-Simons quantum field theoriest
structure. Indeed, each source is allocated an independent Hilbert space, with spin-like
states,

∣∣∣ j1,m j1

〉
and

∣∣∣ j2,m j2

〉
. A basis of their composite Hilbert space can be given as the

tensor product
∣∣∣ j1,m j1

〉
⊗
∣∣∣ j2,m j2

〉
. We would like to write the tensor product of these states

as another spin state,
∣∣∣ j,m j

〉
. Vector composition of angular momenta dictates that j can

take all possible values with | j1 − j2| ≤ j ≤ j1 + j2 in integer steps. To account for all these
possibilities we use the notation

j1 × j2 =

j1+ j2∑
j=| j1− j2 |

j. (7.50)

An example is the tensor product of two spin-1/2 states giving a singlet, j = 0, or a triplet
j = 1, state, so we write

1
2
⊗

1
2

= 0 ⊕ 1. (7.51)

The corresponding representations, R( j1) and R( j2), can be combined in the same way.
More concretely, R( j1) ⊗ R( j2) can be decomposed as

R( j1) × R( j2) =

j1+ j2∑
j=| j1− j2 |

R( j). (7.52)

From the above discussion we see that arbitrarily large j can be obtained if we combine
sufficiently many spins.

Not all values of j are relevant for the Chern-Simons theory. It turns out that for the
expectation values of Wilson loops (7.45) the values of j higher than a certain jmax = k/2
will give the same result as representations with 0 ≤ j ≤ jmax [151] (see Example III). So
we can write

0 ≤ j ≤
k
2
, (7.53)

where j can take all possible k + 1 integer and half integer values, 0, 1/2, 1, ..., k/2. As a
result of this restriction the composition of representations can be expressed in terms of the
non-equivalent ones in the following way (see Example III)

R( j1) × R( j2) =

b( j1 , j2)∑
j=| j1− j2 |

R( j), (7.54)

where

b( j1, j2) = min{ j1 + j2, k − j1 − j2}. (7.55)

This is a symbolic expression in the sense that it keeps from the tensor product of repre-
sentations only the ones that give non-equivalent expectation values of the Wilson loops.

Relation (7.53) signifies that the SU(2) level k theory has k + 1 distinct particles that
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correspond to different representations, R( j), of the SU(2) group. The fusion rules between
these anyonic particles is given by (7.54). This shows that the fusion of two anyons gives
an outcome that can be one of the finitely many that belong to the anyonic model.

An anyon and its antiparticle fuse to the vacuum. For a given representation R( j) that
corresponds to an anyon there exists a dual representation R̄( j) such that their product
gives the trivial representation with j = 0. In the anyonic language a source with the dual
representation corresponds to the anti-anyon.

As an example, consider four sources in the fundamental representation of SU(2). We
assume that the total charge of the sources is the trivial one, such that two of the represen-
tations are dual to the other two. In the case of the four anyons R, R, R̄ and R̄ we have

R × R = R1 + R2, (7.56)

where R1 and R2 are the only two possible resulting representations of SU(2). This gives
rise to a two-dimensional fusion space, which can encode one qubit.

7.2.3 The braiding evolution

The aim of this subsection is to determine the statistics of particles coupled to a non-
Abelian Chern-Simons field. Our approach is rather different from the one we employed in
the Abelian case. What we want to obtain is the unitary that corresponds to the braiding of
two sources. To do this we employ the Hamiltonian formalism of quantum field theory.

Hamiltonian approach

The starting point of a field theory is to write down an action [145, 152, 153]. For illustra-
tion purposes let us take

I[φ] =

∫
d3x

[
G(x)φ0(x) + π1(x)φ̇1(x) −H(x)

]
, (7.57)

where φ0 and φ1 are the fields of the theory and π1 is the conjugate momentum of φ1. We
assume that there is no time derivative of φ0, so there is no π0 and the term H(x) depends
only on φ1 and π1. In canonical quantisation we usually fix the timeslice at t = 0 with
spatial coordinates x = (x1, x2). The quantisation condition requires that the field φ1 and
its canonically conjugate momentum π1 are operators that satisfy

[φ1(x), π1(y)] = iδ(x − y). (7.58)

The states of the system are the wave functionals Ψ[φ1] that formally satisfy the eigenvalue
relation

HΨ[φ1] = EΨ[φ1], (7.59)

where the Hamiltonian is given by H =
∫

d2xH(t = 0, x). This equation needs to be
considered with caution as it is usually plagued with divergences that can be removed by
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appropriate renormalisation conditions [154]. As the action does not involve a time deriva-
tive of φ0 we can treat this variable as a Lagrange multiplier that enforces the constraint

G(x)Ψ[φ1] = 0. (7.60)

The two relations (7.59) and (7.60) are sufficient to determine the wave functionals Ψ[φ1]
that describe the system and its properties.

This approach can be straightforwardly applied to the non-Abelian Chern-Simons the-
ory. With a bit of algebra the action (7.35) can be brought in the form

ICS[A] =
k

4π

∫
d3x

[
Aa

0

(
∂1Aa

2 − ∂2Aa
1 − f abcAb

1Ac
2

)
+ Aa

2Ȧa
1

]
. (7.61)

A comparison of this action with (7.57) dictates that the dynamical field is A1(x), with
A2(x) being its conjugate momentum. Hence, we represent them with operators that satisfy[

Aa
1(x), Ab

2(y)
]

= iδab 4π
k
δ(x − y). (7.62)

Furthermore, A0 is a Lagrange multiplier that imposes the Gauss law constraint. Comparing
the actions (7.57) and (7.61) we also deduce that H = 0, identically. In other words, there
is no dynamics in this model. The only degrees of freedom are gauge-related. As a result,
the behaviour of the model is exclusively determined by the Gauss law constraint.

Similarly to the Abelian case, the sources in the Gauss law are introduced through the
Wilson loops. Surprisingly the sources are now matrices corresponding to the representa-
tion of the A field. Indeed, from (7.45) we see that the trace of the Wilson loop operators
can be taken outside the functional integral. So the field Aa

0 couples to a matrix. In the
presence of two point-like sources at positions x1 and x2, the Gauss law, for the quantised
theory, becomes

Ga(x)ΨIJ[A1] =
k

4π

(
∂1Aa

2(x) − ∂2Aa
1(x) − f abcAb

1(x)Ac
2(x)

)
ΨIJ[A1]

= −δ(x − x1)ΨIK[A1](T a
( j))KJ − δ(x − x2)ΨIK[A1](T a

( j))KJ , (7.63)

where (T a
( j))KI is the KI element of the representation that corresponds to x1 and similarly

for x2. In the presence of such sources the wave functional, ΨIJ[A1], becomes a spinor
where the first index, I, parameterises the components of the spinor and the second index,
J, parameterises the different possible spinors.

Assume we know the wave functional Ψ0[A1] that satisfies the Gauss law without sources,
i.e. Ga(x)Ψ0[A1] = 0. Consider the Wilson line operator

U(Cx1 ) = P exp

i ∫ x1
1

−∞

ds T a
( j)A

a
1(s, x2

1)

 , (7.64)

where x1 = (x1
1, x

2
1) and Cx1 is the path that goes from x1 = −∞ to x1 = x1

1, while the other
coordinate is kept fixed at x2 = x2

1, as shown in Figure 7.4. With the help of (7.62) we can
verify that [

Ga(x),U(Cx1 )
]

= U(Cx1 )T a
( j)δ(x − x1). (7.65)
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tFig. 7.4 Two sources are positioned at x1 and x2. They are described as the endpoints of
two-dimensional Wilson lines, defined along the paths Cx1 and Cx2 starting at −∞ and extending
horizontally to the desired point. The source at x1 is braided around the source at x2 in a
clockwise fashion, thus extending its path by the loop C.

Then the wave functional, which satisfies the Gauss law (7.63) with the two sources, is
given by

ΨIJ,MN[A1] = [U(Cx1 )]MI[U(Cx2 )]NJΨ0[A1], (7.66)

where the M and N indices parameterise all possible solutions. This is equivalent to the
wave function (2.5) of a charged particle in the presence of a magnetic field, or the quan-
tum state of the toric code (5.13) in the presence of two sources. The wave functional
ΨIJ,MN[A1] that satisfies the Gauss law is the complete solution as the Hamiltonian of the
theory is identically zero. Hence, the eigenstate of the system in the presence of two in-
dependent sources at x1 and x2 is given in terms of two Wilson lines that connect infinity
with the position of the sources, as shown in Figure 7.4.

Braiding matrix

To determine the statistics of this model we consider two sources described by the wave
functional (7.66) given in terms of the Wilson lines (7.64). Then we braid source 1 around
source 2 in a clockwise manner, as shown in Figure 7.4. The braiding evolution introduces
a Wilson loop of the form

V(C) = P exp
(
i
∮

C
dx · Aa(x)T a

( j)

)
, (7.67)

that extends the Wilson line U(Cx1 ). The resulting wave functional is given by

Ψ′IJ,MN[A1] = [U(Cx1 )]MK[V(C)]KI[U(Cx2 )]NJΨ0[A1], (7.68)

where the product U(Cx1 )V(C) gives the Wilson operator of the composite path Cx1 · C.
To evaluate the relation between ΨIJ,MN[A1] and Ψ′IJ,MN[A1] we do not need to know the
exact form of Ψ0[A1]. We only need to know that it satisfies V(C)Ψ0[A1] = Ψ0[A1]. In
other words, if we create two sources from the vacuum, move them along separate paths
and then annihilate them the resulting state is the vacuum. Hence, we just need to per-
mute V(C) and U(Cx2 ) to evaluate Ψ′IJ,MN[A1]. Note that if it were [Aa

1(x), Ab
2(y)] = 0,

then [V(C),U(Cx2 )] = 0. Indeed, the matrix representations of the two sources commute
with each other as they act on different Hilbert spaces. So the quantisation condition (7.62)
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OtFig. 7.5 The evolution given in Figure 7.4 is considered in discrete space. Possible non-trivial
contributions in the permutation of the operators [V(C)]KI and [U(Cx2 )]NJ is from the intersection
point, O, of paths C and Cx2 . With a coordinate transformation we can set C to lie along x2, while
Cx2 remains along the coordinate x1.

imposes a non-trivial permutation between these operators. The permutation step is very
similar in spirit to the one we took to calculate the toric code braiding evolution in Sub-
section 5.2.1. A direct evaluation of this operation in the Chern-Simons case has been
performed in [155, 156]. A simplified derivation is given below.

Consider the path configuration given in Figure 7.4. We want to permute operators V(C)
and U(Cx2 ). If the paths of these operators would not cross each other, then they would
simply commute. From (7.62) we see that the non-trivial contribution in their permutation
comes from the point the path C intersects Cx2 . The intersection of these paths is called
O in Figure 7.5. To facilitate the evaluation of the operator permutation we can discretise
the Wilson operators by defining them on a square spacial lattice with infinitesimal lattice
spacing. Then the paths are made out of consecutive links of the square lattice. The field
Aa(i) is defined at the vertices of the lattice with coordinates i = (i1, i2), where i1 is along
x1 and i2 is along x2. The field commutation relations in the discrete space become

[Aa
1(i), Ab

2(j)] = iδab 4π
k
δij. (7.69)

In the discretise space the Wilson operators (7.64) and (7.67) can be written as a products
of exponentials with each exponential corresponding to a lattice link that belongs to the
Wilson line or loop. Such a discrete version of the Wilson line is given by

U(Cx2 ) = P exp

i ∑
i1

Aa
1(i1, i2)T a

( j)

 = P
∏

i1
exp

(
iAa

1(i1, i2)T a
( j)

)
. (7.70)

Here Aa
1(i1, i2) is positioned at the starting point of each link as it is traversed by Cx2 . From

(7.69) we see that all of the exponentials of [V(C)]KI and [U(Cx2 )]MK commute with each
other except when their paths cross at O. Then we are left to permute the two terms whose
fields Aa(i) lie at the same point O, one from the Wilson line (7.64) and one from the
Wilson loop (7.67).

We now focus our analysis on the point O. As the system is invariant under coordinate
transformations we can choose the coordinates at O so that the path C meets the path Cx2

vertically. I.e. the tangent of C at O is along x2, while Cx2 remains along x1, as shown in
Figure 7.5. The non-commuting parts of the exponentials from the two Wilson operators
are given by exp

(
iAa

1(iO)T a
( j)

)
and exp

(
iAb

2(iO)T b
( j)

)
. To proceed we employ the following
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property (see Exercise 7.3). For two operators A and B with a commutator [A,B] that
commutes with bothA and B, i.e. [A, [A,B]] = [B, [A,B]] = 0, we have

eAeB = e[A,B]eBeA. (7.71)

This allows us to reverse the order of [V(C)]KI and [U(Cx2 )]NJ up to a multiplicative term
e[A,B]. To calculate it we employ (7.69) and we set A = iAa

2(iO)T a
( j) and B = iAb

1(iO)T b
( j),

finally giving

[A,B] = −[Aa
2(iO), Ab

1(iO)]T a
( j) ⊗ T b

( j) = i
4π
k

T a
( j) ⊗ T a

( j). (7.72)

Hence, we can relate the states that describe the braided and unbraided configurations by

Ψ′IJ,MN[A1] = BX,Y
M,NΨIJ,S Q[A1], (7.73)

where the X, M indices parameterise point 1 and Y , N parameterise point 2. The braiding
matrix is given by

B = qT a
( j)⊗T a

( j) , (7.74)

for

q = exp
(
i
4π
k

)
. (7.75)

The braiding matrix B remains the same in the continuum limit as it does not depend on the
lattice spacing. This can also be shown with a more involved calculation performed in the
continuum. Note that the lattice discretisation is just a technical step employed to evaluate
the permutation of the Wilson operators. It is not related to defining Chern-Simons theories
on a lattice. Nevertheless, (7.75) is a semiclassical result that holds in the large k limit. The
exact treatment, that takes into account the compactness of the configuration space of both
A1 and its conjugate A2, corresponds to substituting k with k + 2 for the SU(2) group [68].
Hence, the exact result for all values of k is given by

qexact = exp
(
i

4π
k + 2

)
, (7.76)

which tends to (7.75) when k is taken to be large. Relation (7.74) also holds when the two
sources have different representations. The braiding matrix, B, describes the non-trivial
effect which two successive exchanges between two sources can have on their quantum
state. Hence, the Chern-Simons theories can support particles with non-Abelian statistics.
Interestingly, this relation applies to the Abelian case as well. It is known [68] that the
large k limit of the non-Abelian theory is closely related to the Abelian one. Indeed, when
we employ (7.73), (7.74) and (7.75) for the case of two Abelian sources with charge Q we
obtain (7.13).

Consider the case where the employed group is SU(2). It has been shown that when
we use this anyonic system with the qubit encoding given in (7.56) the braiding matrices
(7.74) with (7.76) can give rise to universal quantum computation for k = 3 or k > 5 [61].
This result becomes all more important as Chern-Simons theories are expected to describe
the physics of the fractional quantum Hall effect.
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7.3 Example I: Braiding for the SU(2) Chern-Simons theory

In this example we analyse the braiding properties of the SU(2) Chern-Simons theory level
k in the fundamental representation, j = 1/2. In this case Q = 1 and T a = σa/2. From
(7.74) and (7.76) we have the braiding matrix

B = exp
(
i

4π
k + 2

σa

2
⊗
σa

2

)
, (7.77)

where there is a summation over a = 1, 2, 3. This matrix acts on a two spin-1/2 space of
states, parameterised by

|Ψ〉 =
∑

i, j=0,1

ci j | i j〉 (7.78)

with complex numbers ci j satisfying
∑

i, j |ci j|
2 = 1. We can derive that

3∑
a=1

σa ⊗ σa = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 + 2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = −1 + 2E, (7.79)

with 1 = δi jδkl and E = δilδk j, where i, j are the indices of the operator acting on the
first spin and k, l are the indices acting on the second. Hence, this braiding operator can be
written as

B = exp
[
− i

π

k + 2
(1 − 2E)

]
= exp

(
− i

π

k + 2

)(
1 cos

2π
k + 2

+ iE sin
2π

k + 2

)
, (7.80)

as E2 = 1. For k = 2 we obtain the non-trivial evolution

B = ei π4 E. (7.81)

This matrix interchanges the states of the two spins as E | i j〉 = | ji〉. The resulting braiding
matrix differs from the Ising model matrix (6.57) we derived in the honeycomb lattice case
by an overall phase factor e−iπ/2 [157].

7.4 Example II: From bulk to boundary

The Chern-Simons action is defined on three-dimensional spacetime M. We now show
that this action can be written in terms of a two-dimensional integral on the boundary ∂M.
This property is not just a mathematical nicety. It is closely related to the invariance of the
action under three-dimensional coordinate transformations that gives rise to topologically
invariant observables. In other words, if the information of a system can be efficiently
encoded on its boundary then there is a lot of redundant information in the coordinate
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parameterisation of the bulk. This is expressed as an invariance of the system’s observables
under coordinate transformations.

7.4.1 Abelian case

Consider the action of the Abelian Chern-Simons theory defined on the three-dimensional
space M given by

ICS[A] =
m
2

∫
M

d3xε µνρAµ∂νAρ. (7.82)

We want to demonstrate the topological properties of this action by showing that it can
be reduced to a boundary term. Let us take the Clebsch decomposition of the gauge field,
given by

Aµ = ∂µθ + α∂µβ. (7.83)

This provides a general reparameterisation of A1, A2 and A3 in terms of the fields θ, α and
β. Substituting in the action ICS[A] we obtain

ICS[A] =
m
2

∫
∂M

dS µε µνρθ∂να∂ρβ, (7.84)

defined exclusively on the boundary ∂M of M. Hence, deformations of the field Aµ are
considered to be equivalent if they do not alter its value at the boundary, where the topology
of the system is encoded.

7.4.2 Non-Abelian case

The non-Abelian Chern-Simons action is given by

ICS[A] =
k

4π

∫
M

d3x ε µνρ tr
(
Aµ∂νAρ + i

2
3

AµAνAρ

)
, (7.85)

where we take M to be the infinite three-dimensional space R3. In the absence of sources
the field is a pure gauge, Aµ = −iU†∂µU. Then the action becomes ICS[A] = 2πω[U] with

ω[U] =
1

24π2

∫
M

d3xε µνρtr
(
U†∂µUU†∂νUU†∂ρU

)
, (7.86)

the winding number we met also in (7.38). We now explicitly demonstrate that ω[U] is an
integer. For convenience we take U ∈ SU(2) with the explicit form

U = exp
(
iλaσ

a

2

)
, (7.87)

where σa are the Pauli matrices and λa(x) are general real functions of x ∈ M. We can
employ the property

exp
(
i|λ|λ̂ · σ

)
= 1 cos |λ| + iλ̂ · σ sin |λ| (7.88)
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and substitute U in ω[U] to finally find

ω[U] =
1

16π2

∫
∂M

dS µε µνρεabcλ̂
a∂νλ̂

b∂ρλ̂
c(|λ| − sin |λ|), (7.89)

where |λ| =
√
λaλa, and λ̂a = λa/|λ| for a = 1, 2, 3. So, with this parametrisation we

managed to rewrite the non-Abelian Chern-Simons action as a surface boundary integral.
We can choose now the behaviour of λ at infinity to be

|λ(r → ∞)| → 2πn, (7.90)

so that

U(r → ∞)→ ±1. (7.91)

This is a boundary condition of the group elements U, while the behaviour of U can be
arbitrary everywhere else. This gives

ω[U] =
n

8π

∫
∂M

dS µε µνρεabcλ̂
a∂νλ̂

b∂ρλ̂
c. (7.92)

We previously encountered a similar integral in the definition of the Chern number (6.48).
There we saw that it gives the winding number of the mapping from the surface ∂M to
the two-dimensional sphere parameterised by λ̂a. From (7.90) we see that λ̂a takes non-
trivial values over a wide range, while the integral in (7.92) corresponds to a non-trivial
unit winding. This gives

ω[U] = n. (7.93)

In other words, ω[U] depends only on the global properties of U. Equivalently, the action
ICS[A] depends on the global properties of Aµ. Note that (7.92) is proportional to (7.84) of
the Abelian case.

7.5 Example III: Non-Abelian anyons and their fusion rules

Here we demonstrate (7.53). This relation dictates that there is only a finite number of
different species of anyonic sources emerging from the non-Abelian Chern-Simons theory
with level k. We also demonstrate the fusion rules of these anyons. For these tasks we
follow the methodology given in [151]. In this reference and in what follows the Gauss
law is solved at the classical level. The resulting vector potential can then be employed in
the functional integral (7.45) for evaluating the expectation value of arbitrary Wilson loop
operators.
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tFig. 7.6 (a) An annulus is depicted with surface parameterised by polar coordinates r1 ≤ r ≤ r2 and
0 ≤ φ ≤ 2π. A source is placed at the centre of the puncture depicted as a black disk. The
presence of the source is witnessed by the holonomy U′ with a loop that wraps around the
puncture. (b) Consider the surface of a sphere with three punctures each supporting a source.
These sources have total trivial charge, i.e. U′1U′2U′3 = 1. This can be verified by taking a loop
around all three punctures that corresponds to the holonomy of the product U′1U′2U′3. As the loop
is contractible due to the compact topology of the sphere it should correspond to the trivial
holonomy 1.

7.5.1 Number of anyonic species

Consider the SU(2) Chern-Simons theory defined on an annulus. In polar coordinates (r, φ)
the surface of the annulus is parameterised by r1 ≤ r ≤ r2 and 0 ≤ φ ≤ 2π. The puncture at
the origin of the disk can harbour a source described by the representation λ, as shown in
Figure 7.6(a). For convenience, we solve the Gauss law in terms of the appropriate vector
potential. As there are no sources directly on the annulus the vector potential is a pure
gauge given by

Aµ = −iU†∂µU. (7.94)

We want this vector potential to satisfy the Gauss law (7.63), but with one source. For that
we take U to be an SU(2) element parameterised by [151]

U(r, φ, t) = Ũ(r, φ, t)U′(φ, t) with U′(φ, t) = ei φk λ(t). (7.95)

The unitary Ũ is an arbitrary group element that is single valued on the annulus, i.e.
Ũ(r, 2π, t) = Ũ(r, 0, t). The unitary U′ arises from the presence of a source at the ori-
gin. As shown in Figure 7.6(a) it corresponds to a Wilson loop or holonomy with respect
to a loop that wraps around the source. For k > 1 it is multivalued as U′(2π, t) , U′(0, t).
The Abelian version of this is the Aharonov-Bohm effect, where a multivalued phase factor
emerges when a charge circulates a flux. It is clear that the system is invariant under gauge
transformations that act by multiplying the element U of (7.95) both from the left and from
the right.

We want to observe the behaviour of U′ when the source λ is in a particular j repre-
sentation of the SU(2) group. By a gauge transformation we can orient λ along the third
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direction in su(2) space, i.e. λ = 2 jT 3, where j can be an integer or a half-integer. The
integral value of 2 j can be deduced by a similar argument to the Abelian case [146]. We
can take j to parameterise the different types of sources. To study the presence of a source
we consider the multivalued component at φ = 2π. From the above analysis we have

U′(2π, t) = ei 4π j
k T 3

, for j = 0,±
1
2
,±1,±

3
2
,±2, ... . (7.96)

But not all of these values are independent. For j′ = j + k we obtain

ei 4π j′

k T 3
= ei 4π j

k T 3
ei4πT 3

= ei 4π j
k T 3

, (7.97)

where exp(i4πT 3) = 1 as a rotation by 4π with respect to any direction of the su(2) alge-
bra gives back the identity. So not all the j values give distinct sources. There is another
symmetry that restricts even more the number of sources. With a gauge transformation by
U1 = exp(iπT 1) we can rotate U′ around the 1 axis so that

U1U′(2π, t)U†1 = ei 4π(− j)
k T 3

. (7.98)

As a result, the substitution j′ = − j gives the same type of sources, as their effect is related
by a gauge transformation. The identification of the representations under the transforma-
tions

j′ = j + k and j′ = − j, (7.99)

reduces the number of independent sources to k + 1 many. For convenience we choose the
sources to be parameterised by

j = 0,
1
2
, 1, ...,

k
2
. (7.100)

Hence, there are k + 1 different anyonic sources emerging from the SU(2) level k Chern-
Simons theory.

7.5.2 Fusion rules

To study the fusion rules between the sources of the SU(2) level k Chern-Simons theory we
consider the case where there are three sources present in their corresponding punctures on
the surface of a sphere, as shown in Figure 7.6(b). Each source is described by its holonomy

U′i = ei 4π ji
k T 3

for i = 1, 2, 3. (7.101)

The holonomy given by the product of these three holonomies, U′1U′2U′3, corresponds to
a loop that wraps around all three sources. Due to the geometry of the sphere it can be
contracted to a point giving rise to the trivial holonomy. This statement takes the following
form

ei 4π j1
k T 3

ei 4π j2
k T 3

ei 4π j3
k T 3

= 1. (7.102)

Importantly (7.102) holds for all equivalent representations that can be obtained with the
transformations (7.99). When j1 + j2 ≤ k/2 then from (7.50) we have that | j1 − j2| ≤ j3 ≤
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j1 + j2, which follows the standard composition rules of the SU(2) representations. This
range of j3 parameters corresponds to independent sources as they are all smaller than k/2.
On the other hand, when j1 + j2 > k/2 we can rewrite j1 and j2 in (7.102) so that j3 takes
values smaller than k/2 as well. Let us multiply the right hand side with two elements
ei2πT 3

= ±1, where the sign corresponds to integer or half-integer representations of T 3.
In the case of three sources, either two of them are half integer and the third integer or
they all have integer j. We can combine two ei2πT 3

terms with the possible half-integer j’s,
say j1 and j2, without changing the right hand side of (7.102). By employing the (7.99)
symmetries we can change the sign of j1 and j2 as well. With these steps relation (7.102)
becomes

ei 4π
k ( k

2− j1)T 3
ei 4π

k ( k
2− j2)T 3

ei 4π j3
k T 3

= 1, (7.103)

which effectively substitutes j1 with k/2 − j1 and j2 with k/2 − j2. As a conclusion the
upper bound of the possible values of j3 becomes j3 ≤ (k/2 − j1) + (k/2 − j2) or in other
words

j3 ≤ k − ( j1 + j2). (7.104)

With this condition the value of j3 satisfy j3 < k/2 as we have (k/2− j1)+(k/2− j2) < k/2. If
instead j1 and j3 where half integers then similar manipulations of (7.102) would produce
the same condition (7.104). This derives the result given in (7.55).

Summary

In this Chapter we studied the Chern-Simons theories. These topological quantum field
theories can describe general Abelian anyons as well as a particular class of non-Abelian
anyons. The Abelian Chern-Simons action emerges as part of electromagnetism when we
restrict to two spatial dimensions. What this action does is to make any direct interactions
between sources to be short ranged. At the same time it allows topological interactions of
the Aharonov-Bohm type that give rise to anyonic statistics. Non-Abelian Chern-Simons
theories support a discrete family of non-Abelian anyons. This family has a variety of
fusion properties and statistical behaviours that can be described with general formulas,
such as the braiding matrix (7.74). For more details we refer to more specialised literature
[158, 159].

We also studied the expectation value of Wilson loop operators, 〈W(L)〉. The loops of
these operators can be considered as the worldlines of anyons that can form any general
link, L. Due to coordinate transformation invariance of the action and of the Wilson loop
operators the expectation value 〈W(L)〉 is invariant under any continuous deformation of
the link L. Hence, Chern-Simons theories give rise to topological invariants of links. In
the case of Abelian Chern-Simons theories such an invariant is given in the form of the
Gauss integral. This was our first encounter of the relation between Chern-Simons theories
and topological invariants of links. While two links with different linking numbers are
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necessarily non-equivalent there is a large class of links with the same linking number that
are not equivalent under continuous deformations of the links. The generalisation to non-
Abelian Chern-Simons theories provides more sophisticated tools to address the question
of distinguishability between two links. They give rise to the Jones polynomial that is
presented in the next Chapter.

Exercises

7.1 Demonstrate that the Abelian Chern-Simons action (7.7) is invariant under the gauge
transformation

Aµ(x)→ Aω
µ (x) = Aµ(x) + ∂µω(x). (7.105)

For the derivation assume that Aµ goes to zero at the boundaries of the system.
7.2 Consider the Abelian Chern-Simons theory for a given m. Take a source to be a disk

of radius R with homogeneous distribution of charge Q on it. Derive the spin (7.14)
of the source by calculating the total phase accumulated from the charge when we
rotate the disk by 2π. [Hint: Evaluate the phase of a small ring of charge of radius
0 ≤ r ≤ R due to the flux enclosed by the ring].

7.3 Prove that

e−λBAeλB = A + λ[A,B], (7.106)

when [A, [A,B]] = [B, [A,B]] = 0. Then demonstrate that relation (7.71) holds.
[Hint: Consider the function f (x) = exAexB and its differentiation with respect to x].
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8 The Jones polynomial algorithm

The study of anyonic systems as computational means has led to the exciting discovery
of a new quantum algorithm. This algorithm provides a novel paradigm that fundamen-
tally differs from searching [13] and factoring [14] algorithms. It is based on the particular
behaviour of anyons and its goal is to evaluate Jones polynomials [160, 161]. These poly-
nomials are topological invariants of knots and links, i.e. they depend on the global charac-
teristics of their strands and not on their local geometry. The Jones polynomials were first
connected to topological quantum field theories by Edward Witten [68]. Since then they
have found numerous applications in various areas of research such as biology for DNA
reconstruction [162] and statistical physics [163].

The best known classical algorithm for the exact evaluation of the Jones polynomial de-
mands exponential resources [164]. Employing anyons involves only a polynomial number
of resources to produce an approximate answer to this problem [165]. Evaluating Jones
polynomials by manipulating anyons resembles an analogue computer. Indeed, the idea is
equivalent to the classical setup, where a wire is wrapped several times around a solenoid
that confines magnetic flux. By measuring the current that runs through the wire one can
obtain the number of times the wire was wrapped around the solenoid, i.e. their linking
number. Similarly, by creating anyons and spanning links with their worldlines we are
able to extract the Jones polynomials of these links [166]. The translation of this anyonic
evolution to a circuit based quantum algorithm was explicitly demonstrated in [167].

Before we present the anyonic quantum simulation of Jones polynomials we first remark
on their significance. Jones polynomials have been introduced to establish equivalences
between knots or links. A knot is a single component strand living in a three-dimensional
space that has no open ends. A link consists of many strand components with no open
ends. For simplicity we refer in the following to a link also in the single component case.
The question we want to address is whether two links are equivalent or not. The equiva-
lence is with respect to isotopy moves, i.e. any kind of continuous deformations of the link
components apart from cutting them open and reconnecting them. One can check that the
problem of equivalence of links becomes intractable as the size of the links, measured by
the number or twists and crossings, increases.

It is a rather surprising fact that the equivalence relations between links can be system-
atically characterised in a mathematical way. Based on this characterisation it is possible
to construct link invariants, such as the Jones polynomials, that do not change under iso-
topy moves. Hence, if two links have different link invariants then it is not possible to
continuously deform one of them into the other. In other words, they are not topologically
equivalent. This is a fascinating property which allows the systematic study of links.

In the following sections we present the isotopy moves that characterise the equivalen-
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cies between links. With simple steps we then introduce the Jones polynomial of a link,
that remains unchanged under the application of isotopy moves. This method is based on
geometrical considerations. It demonstrates that equivalent links necessarily have the same
Jones polynomial. To complement it we develop an algebraic approach based on a particu-
lar representation of braids. This method provides the means to evaluate Jones polynomials
in terms of anyonic evolutions.

8.1 From link invariance to Jones polynomials

The quantum properties of non-Abelian anyons can be given by the expectation value of
their spacetime evolutions. Suppose we generate anyons from the vacuum, braid them and
then ask for the probability that they fuse back to the vacuum. To find this probability we
need to calculate the expectation value of the anyonic evolution with worldline trajecto-
ries that form closed paths, i.e. links. Due to the statistical nature of the anyonic evolu-
tions, these expectation values are invariant under continuous deformations of trajectories.
Hence, they are topological link invariants. Such expectation values were calculated in the
previous Chapter. There, we mentioned that Jones polynomials appear as the expectation
values of anyonic evolutions described by non-Abelian Chern-Simons theories [68].

Here, we explicitly construct the Jones polynomials by studying the topological invari-
ance of links. Initially, we define equivalency classes between links that can be continu-
ously deformed into each other. Three elementary isotopy moves, called the Reidemeister
moves, are sufficient to establish these topological equivalencies. Next, we assign complex
numbers to topological properties of the links, such as the braiding of their strands. The fi-
nal outcomes are quantities that are invariant under any kind continuous deformation of the
links. Still these quantities keep information about their topological characteristics. These
are the topological link invariants we are looking for.

8.1.1 Reidemeister moves

To rigorously define the set of continuous deformations of a given link we need to first
systematically categorise its geometrical properties. To achieve that, we project the link
onto a plane. This gives a two-dimensional diagram, where we keep the overpasses and
underpasses of the strands intact according to their natural three-dimensional configuration.
This is a necessary step to avoid the dependence of the crossings on our perspective of the
link. Such a planar projection can be achieved by continuous deformations of the original
link.

Now we can present the Reidemeister theorem [168, 169]. It states that two links can be
deformed continuously from one into the other if and only if their two-dimensional projec-
tions can be deformed from one to the other via a sequence of three simple local moves.
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(b) 

(c) 

Move I 

Move II 

Move III tFig. 8.1 The Reidemeister moves that relate equivalent links. (a) Move I undoes a twist of a strand. (b)
Move II separates two unbraided strands. (c) Move III slides a strand under a crossing.

These are presented in Figure 8.1 and concern parts of the links. They can be applied itera-
tively as many times as deemed necessary. In particular, move I undoes a twist. This move
leaves the link invariant as it is not involved with a self knotting or braiding with another
link. Move II separates two strands of the link if they are not braided together. Finally,
move III concerns three strands of a link. It allows to slide a strand under the crossing
of two other strands. All these isotopy moves correspond to continuous deformations of
strands, which can define topological equivalences between links. In other words, Reide-
meister moves can transform between two-dimensional projections of any two equivalent
links.

8.1.2 Skein relations and Kauffman brackets

After identifying the equivalences between links, we would like to associate numbers to
them. In particular, we introduce a polynomial denoted as 〈L〉, where L can be a link or
parts of it. This polynomial, known as the state sum or Kauffman bracket, was initially
introduced by Louis Kauffman [163]. The state sum is defined to be invariant under isotopy
moves that transform links in a continuous way. Our strategy for the evaluation of 〈L〉 for
a given link is to decompose it into the state sum of simpler links. This can be done with
certain steps that keep information of the decomposition process.

The topologically simplest link configuration comprises of disentangled loops. We use
this as the reference configuration. Our aim is to find a process that relates the state sum of a
general link to the state sum of disentangled ones. For that we introduce the Skein relations
that split the crossings, as shown in Figure 8.2. The Skein relations replace the state sum of
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tFig. 8.2 Splitting an actual crossing according to its orientation, (a) or (b), by substituting it with two other
avoiding crossings weighted with complex numbers A and B. By rotating all of the crossings in
(a) by π/2 we obtain relation (b).

an actual crossing with the state sum of two avoided crossings. They also introduce general
complex numbers A and B as weights to horizontal and vertical splittings of a crossing. In
a sense, these are the defining relations that produce the Jones polynomials instead of some
other topological invariants.

When a Skein relation is applied to a given crossing it produces two new graphs, with
the rest of the graph remaining the same. If we apply it on all N actual crossings of a graph
we obtain the sum of 2N different elementary graphs. The final configuration is a sum of
disjoint, unentangled loop configurations denoted by S and weighted by products of A’s
and B’s. We denote the number of these loops at each configuration S by |S |. Moreover,
we define the following properties of the state sum with respect to loops

〈K ∪©〉 = d〈K〉, (8.1)

where K is a non-empty link, © is a separate loop and d is a real constant. For the case of
an isolated loop we define

〈©〉 = 1. (8.2)

The Skein relations of Figure 8.2 together with (8.1) and (8.2) uniquely define the state
sum of a link L. Its general form is given by

〈L〉 =
∑
{S }

d|S |−1AiB j. (8.3)

The summation runs over all 2N possible configurations S , which result from the splitting
of the graph. Also i and j = N − i are the times a horizontal or a vertical splitting, respec-
tively, was employed, in order to obtain the S configuration from the initial link, L. Hence,
we have assigned a number to a link in the form of the state sum.

Our task now is to choose A, B and d so that the state sum 〈L〉 is invariant under the
Reidemeister moves II and III. Later on we shall see how to decorate 〈L〉 to make it invari-
ant with respect to the Reidemeister move I as well. We can determine the values of A, B
and d by requiring that the Skein relations are compatible with the Reidemeister moves.
We initially apply the Skein relation to the state sum of the diagram in the left hand side
of Reidemeister move II. The resulting configuration is given in Figure 8.3. It implies that
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Reidemeister move II produces two new graphs. To make them equal to the right hand side of
this move we set ABd + A2 + B2 = 0 and AB = 1.
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+BtFig. 8.4 Applying the Skein relations to the state sum of the left hand side diagram of the Reidemeister
move III automatically gives the right hand side. In the second step we employed the
Reidemeister move II holding for the B and d given by (8.5).

the state sum is invariant with respect to the Reidemeister move II if

ABd + A2 + B2 = 0 and AB = 1. (8.4)

These relations determine both B and d in terms of A as follows

B = A−1, d = −A2 − A−2. (8.5)

Next we consider the Reidemeister move III. Figure 8.4 shows that no extra condition
between A, B and d needs to be imposed in order to satisfy it.

So the state sum 〈L〉 is in general a Laurent polynomial in A, given by

〈L〉 =
∑
{S }

d|S |−1Ai− j with d = −A2 − A−2. (8.6)

The evaluation of the state sum for various simple links is given in Example I. To create
a polynomial that also satisfies the Reidemeister move I we need to introduce the Jones
polynomials.

8.1.3 Jones polynomial

We can directly verify that the state sum is in general not invariant under Reidemeister
move I. Consider the state sum of a single twist as the one presented in Figure 8.5. Applying
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(−A)3. Hence, the state sum is not invariant under twists of strands.
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itFig. 8.6 The writhe w(L) of an oriented link L is defined as the sum of the signs assigned to each
oriented crossing of L as given in (a) and (b).

the Skein relations we see that the state sum introduces an extra factor (−A)3. Since this
is an overall phase factor, it can be easily accounted for. A new polynomial, the Jones
polynomial, that is invariant under all Reidemeister moves for any A is defined by

VL(A) = (−A)3w(L)〈L〉, (8.7)

where w(L) is the writhe or twisting of the link L. To determine the writhe we need to give
an orientation to all link components. Then we take the sum of signs for all crossings

w(L) =
∑

i

wi, (8.8)

where the wi’s are assigned to each vertex i as in Figure 8.6. The writhe is well defined as
it does not depend on the choice of initial orientations of the link. Whenever a twist gives
rise to a factor (−A)−3, as the one in Figure 8.5, the prefactor (−A)3w(L) contributes (−A)3

and cancels it. The Jones polynomial VL(A) is hence insensitive to all Reidemeister moves.

In Figure 8.7 we summarise the Skein relations that are compatible with the Reidemeis-
ter moves and the contributions from independent loop. For A = t−1/4, the polynomial
VL(A) agrees with the original definition of the Jones polynomial. The above construction
is a diagrammatic derivation of the Jones polynomials given by Kauffman [163]. The moti-
vation was the construction of topological invariants of links. In the next section we present
an algebraic derivation of the Jones polynomials based on the properties of the braid group.



163 8.2 From the braid group to Jones polynomialst
(a) (b) 

(c) 
! 

= A

! 

+A"1

! 

= A"1

! 

+A

! 

= "A2 " A"2 = dtFig. 8.7 The reduction procedures applied to the state sum of a link to give finally a polynomial in A. (a)
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! 

...

! 

...

! 

...

! 

...

! 

bi =

! 

1

! 

2

! 

i

! 

i +1

! 

n "1

! 

n

! 

bi
"1 =

! 

1

! 

2

! 

i

! 

i +1

! 

n "1

! 
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i , for i = 1, ..., n − 1, act on n strands. (a) The

effect of bi is to exchange the strands i and i + 1 in a clockwise way, where time runs from top to
bottom. (b) The braid b−1

i exchanges the strands i and i + 1 in a counterclockwise way.

8.2 From the braid group to Jones polynomials

We now take an algebraic approach to derive Jones polynomials that is closer to the original
method Vaughan Jones used when he discovered them [160]. This approach is based on the
braid group. The braid group can be employed to describe the statistics between anyons. It
only accounts for the topological properties of anyonic worldlines and is independent on
their geometrical characteristics. So this braid group approach is expected to also give rise
to topological invariants. In the following we present the braid group and its properties.
Then we define a trace of the braid group elements and derive the Jones polynomials.

8.2.1 The braid group

Let us denote by bi for i = 1, ..., n − 1 the generators of the braid group Bn. The behaviour
of these generators is better visualised when considering their action on strands. Specifi-
cally, if n strands are placed in a canonical order, then the element bi describes the effect of
exchanging the strands i and i + 1 in a clockwise fashion, as shown in Figure 8.8. Their in-
verses are given in terms of counterclockwise exchanges. All possible braidings of strands
can be written as a combination of the bi’s and their inverses. Consider, for example, the
product of two braiding elements b1 and b2

2. This product can be represented by placing the
diagrams of the corresponding generators on top of each other in a time ordered fashion
and glueing the aligned strands together, as shown in Figure 8.9. A general braid is ob-
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=tFig. 8.10 Schematic representation of the Yang-Baxter equations. (a) Exchanging the order of two braids
does not have an effect if they are sufficiently far apart, i.e. bib j = b jbi when |i − j| ≥ 2. (b) Two
braidings are equivalent under simple continuous deformations of the strands,
bibi+1bi = bi+1bibi+1 for 1 ≤ i < n. (c) Undoing a braid gives the identity bib−1

i = e.

tained when multiplying the generators bi together in arbitrary integer powers. This creates
braidwords of the form

B = bk1
i1

bk2
i2
...bkm

im
, (8.9)
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where the powers of b’s are positive or negative integers and the subscripts allow the b’s to
order in any desired way.

The generators of the group Bn satisfy the Yang-Baxter equations

bib j = b jbi, for |i − j| ≥ 2, (8.10)

bibi+1bi = bi+1bibi+1, for 1 ≤ i < n, (8.11)

bib−1
i = b−1

i bi = e, (8.12)

where e is the identity element of the group. These relations have a simple diagrammatic
interpretation, which can be found in Figure 8.10. Even though we can represent the braids
with diagrams we should not forget that we are actually interested in their matrix represen-
tation.

The Yang-Baxter equations admit as solutions an infinite number of matrix represen-
tations of braids. They describe the effect braiding of anyons can have on their quantum
states. The simplest such statistical evolution is the one-dimensional representation. Its el-
ements bi = eiθ, where θ ∈ [0, 2π), correspond to Abelian anyons. Non-Abelian anyons
correspond to higher dimensional irreducible representation of the braid group. They can
produce non-trivial unitary rotations of the quantum states of anyons.

8.2.2 The Temperley-Lieb algebra

The braid group is a mathematical representation of braided strands. To derive topological
invariant quantities related to the links of these strands, we need to decompose braided
strands to simpler geometrical structures. Mathematically, this can be achieved with the
help of the Temperley-Lieb algebra, which is diagrammatically equivalent to substituting
the crossings of the strand braids with avoided crossings.

The Temperley-Lieb algebra T Ln(d) is generated by Ei with i = 1, ..., n − 1 that satisfy

EiE j = E jEi, for |i − j| ≥ 2, (8.13)

EiEi±1Ei = Ei, (8.14)

E2
i = dEi, (8.15)

where d is a real number. Apart from their matrix representation, these elements can be
geometrically interpreted in terms of the Kauffman n-diagram, which is shown in Figure
8.11. A general Kauffman n-diagram has n canonically ordered points at the top and at
the bottom of a rectangle. These points are connected with each other with strands. In
particular, these strands do not cross each other and have no loops. Figure 8.12 illustrates
the properties (8.13), (8.14) and (8.15) in terms of Kauffman n-diagrams.

The purpose of introducing the Temperley-Lieb algebra is to establish a useful unitary
representation of the braid group. Let us define the particular representation ρA as

ρA(bi) = AEi + A−11 and ρA(b−1
i ) = A−1Ei + A1, (8.16)

where 1 is the identity and A is a newly introduced parameter. This is a natural representa-
tion of the braid group, if A satisfies d = −A2 − A−2. To see this we need to verify that the
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tFig. 8.12 Diagrammatic representation of the Temperley-Lieb algebra properties. (a) EiE j = E jEi for
|i − j| ≥ 2, (b) EiEi±1Ei = Ei and (c) E2

i = dEi.

representation group elements, ρA(bi), satisfy the braid group relations (8.10), (8.11) and
(8.12) provided the Ei’s satisfy (8.13), (8.14) and (8.15). Let us demonstrate this equiva-
lence. It is easy to see that the representations of bi and b j commute as Ei and E j commute,
for |i − j| ≥ 2. Indeed, for |i − j| ≥ 2 we have

ρA(bi)ρA(b j) = (AEi + A−11)(AE j + A−11) = (AE j + A−11)(AEi + A−11)

= ρA(b j)ρA(bi), (8.17)

which demonstrates (8.10). Subsequently, we want to show that ρA(bi)ρA(bi+1)ρA(bi) =

ρA(bi+1)ρA(bi)ρA(bi+1). For that we have

ρA(bi)ρA(bi+1)ρA(bi)

= A3EiEi+1Ei + AEi+1Ei + AE2
i + A−1Ei + AEiEi+1 + A−1Ei+1 + A−1Ei + A3
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tFig. 8.13 Diagrammatically, the Markov trace corresponds to connecting together the opposite ends of the
strands. (a) The Markov trace of a braid element. (b) The Markov trace of a Temperley-Lieb
element.

= (A3 + Ad + A−1)Ei + 2AEiEi+1 + A−1(Ei + Ei+1) + A3

= ρA(bi)ρA(bi+1)ρA(bi), (8.18)

where we used the defining relation of d that gives A3 + Ad + A−1 = 0. This demonstrates
(8.11). Finally, we have

ρA(bi)ρA(b−1
i ) = (AEi + A−11)(A−1Ei + A1) = dEi + A2Ei + A−2Ei + 1 = 1, (8.19)

which demonstrates (8.12). Thus, ρA(bi) is a representation of the braid group generators
Bn parameterised by A. To ensure that the representation ρA(bi) is unitary we need to take
|A| = 1 and Ei Hermitian for all i. Indeed, then we have

ρA(bi)ρA(bi)† = (AEi + A−11)(A∗E†i + (A−1)∗1) = E2
i + (A2 + A−2)Ei + 1 = 1. (8.20)

The representation (8.16) can be viewed as the matrix equivalent of the Skein relations
presented in Figure 8.3. The introduction of the Temperley-Lieb algebra decomposes a
braidword to a sum of products of Ei elements. The corresponding Kauffman’s n-diagram
of each term in the sum comprises of a set of strands that do not cross each other. This sum
is very similar to the state sum (8.3), though we still deal with Temperley-Lieb algebra
elements and not with polynomials. To actually obtain a number we need to introduce an
appropriate trace.

8.2.3 Markov trace and Jones polynomials

The concept of a trace is well defined for the case of square matrices, as the sum of all its
diagonal elements. We can generalise the trace as a mapping from braids or Temperley-
Lieb elements to numbers. Then the trace of the braids ρA(b), parameterised by A, is, in
general, a polynomial in A. In addition, we can give a geometrical interpretation to this
trace that establishes the relation between open ended strands and links. A version of this
tracing procedure, called the Markov trace, consists of connecting the opposite endpoints
of a braidword B together, as shown in Figure 8.13(a). We denote the resulting link

L = (B)Markov. (8.21)
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by continuous deformations of the strands we can move X and Y on the other side and then
rotate the whole diagram by π to bring it back to the original orientation. These processes
exchange the order of X and Y.

As a conclusion, a braidword with a trace gives a link. Maybe it is less expected that the
converse is also true. From Alexander’s theorem [170] we know that every link can be
obtained from a braidword with a trace.

We would like to evaluate the Markov trace of braidwords with generators represented
by (8.16). For that we need the Markov trace of a product of elements of the Temperley-
Lieb algebra, T Ln(d), that comprise a Kauffman n-diagram. In the following, we call such a
product, as well as its corresponding diagram K. The Markov trace on K can be performed
again by connecting its opposite endpoints together. This gives rise to a set of disjoint
loops, as shown in Figure 8.13(b). Let a be the number of such loops. Then we can define
the trace of K to be

tr(K) = da−n, (8.22)

where n is the number of points at a horizontal side of the Kauffman diagram. From (8.22)
we can derive the following properties of the Markov trace

tr(1) = 1, (8.23)

tr(XY) = tr(YX), for any X,Y ∈ T Ln(d), (8.24)

tr(XEn−1) =
1
d

tr(X), for any X ∈ T Ln−1(d). (8.25)

These properties follow directly from the definition (8.22). Indeed, the trace of the Kauff-
man diagram of 1 gives a = n loops, so (8.23) follows. The commutation processes of two
elements X and Y is shown diagrammatically in Figure 8.14, thus demonstrating (8.24).
Finally, if a single En−1 element is at the end of a Kauffman diagram then its removal
produces an extra loop component and a d contribution needs to be removed. This can be
verified with the example of Figure 8.13(b). There, if we replace E2 with the identity then
we need to introduce a factor 1/d in (8.25) to compensate for the change in the numbers of
loops. Moreover, it is possible to show that the Markov trace satisfying properties (8.23),
(8.24) and (8.25) is uniquely defined [167].

The Markov trace acts linearly, i.e. tr(K + K′) = tr(K) + tr(K′). So we can consider the
trace of braids in the representation ρA(B) of (8.16) as actually a trace acting on a sum of
general Temperley-Lieb elements. Moreover, one can show that this trace directly relates
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Table 8.1 Relation between links and

Jones polynomials

Links Jones polynomials

L = L′ =⇒ VL(A) = VL′ (A)
L , L′ ⇐= VL(A) , VL′ (A)

to the state sum (8.6) as follows [167]

dn−1tr(ρA(B)) = 〈(B)Markov〉(A). (8.26)

The link L = (B)Markov is defined as the diagrammatic representation of the Markov traced
braid B. To show the validity of (8.26) we employ the equivalence between Skein relations
and the braid representation (8.16). The diagrammatic trace of ρA(B) has exactly the same
terms as the configurations S of unentangled loops in the state sum (8.6). Also all the
coefficients that are powers of A are in exact agreement as they are introduced in the same
way. Finally, on the left hand side of (8.26) we have a factor of dn−1 and a factor of da−n

coming from the trace of each term of the sum with a loops. This exactly matches the factor
d|S |−n on the right hand side, where |S | = a. So (8.26) holds identically.

From the state sum we can directly write the Jones polynomial in the following way

VL(A) = (−A)3w(L)dn−1tr(ρA(B)). (8.27)

Thus, we have an explicit form for the Jones polynomials in terms of the braid represen-
tations ρA(B). This was our initial goal. The importance of this relation is that it gives the
means to calculate the Jones polynomials in terms of braiding operations. When a particu-
lar anyonic model is considered, with statistical evolutions given by ρA(B), then VL(A) with
L = (B)Markov can be calculated from the evolution operator of anyons. This is analysed in
detail in the next section.

8.3 Analog quantum computation of Jones polynomials

Before we demonstrate how to obtain Jones polynomials from anyonic quantum evolutions,
let us motivate this endeavour. The practical interest in evaluating Jones polynomials is
based on the following fact. A link L gives rise to a certain Jones polynomial, VL(A),
parameterised by A. This polynomial is constructed so that another link L′ that can be
continuously deformed to L gives exactly the same Jones polynomial, VL′ (A) = VL(A).
Importantly, when two links have different values of Jones polynomials for some A, they
are inequivalent. The reason for this is that if they were equivalent, they would necessarily
give the same Jones polynomial. However, equality in the Jones polynomials of two links
does not imply that the links are equivalent. These relations are summarised in Table 8.1.
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tFig. 8.15 An anyonic quantum evolution that serves as an analog computation of Jones polynomials,
where time flows downwards. Five pairs of anyons are created from the vacuum. This initial
state is denoted by |ψ〉. Half of the anyons are braided with each other to produce the braidword
B. Subsequently, the anyons are fused back together. The state of the anyons that corresponds
to the vacuum fusion outcome is the same state 〈ψ |. The probability of this evolution is the state
sum that directly gives the desired Jones polynomial.

We do not know of any topological invariant that uniquely characterises links and distin-
guishes all the non-equivalent ones. Finding link invariants with this property is one of the
main goals in the mathematical field of topology. Still being able to efficiently evaluate the
Jones polynomials for some A gives the means to distinguish inequivalent links. This can
be very useful in various areas of statistical physics, applied technologies and medicine,
where complex strand-like structures emerge. Indeed, the braid configuration of extended
objects determines their properties in many cases.

Computation of Jones polynomials is a BQP-complete problem. In other words, their
computation requires all the power quantum mechanics can offer, that otherwise would
take exponential classical resources [171]. Moreover, no closed form exists that gives the
number of loops as a function of the resolution of the link apart from a handful of values
of A. On the other hand it is possible to extract information about the value of the Jones
polynomial by simply braiding anyons together. Such a quantum simulation with anyons
was proposed by Freedman, Kitaev, Larsen and Wang [165]. It takes advantage of the
quantum properties of anyons in order to efficiently evaluate the Jones polynomials [172,
173]. The translation of such an anyonic evolution to a quantum algorithm was performed
by Aharonov, Jones and Landau in [167].

We now describe the main principles in the analogue quantum computation of Jones
polynomials with anyons. We initially consider an anyonic model with statistics that cor-
responds to a particular representation of the braiding group, ρA(B) given in (8.16). The
parameter A provides the particular statistical behaviour of the anyons. The expectation
values of their braiding evolutions can then be related to the Jones polynomials in the fol-



171 8.3 Analog quantum computation of Jones polynomialst
Table 8.2 Quantum simulation with anyons

Quantum simulation Anyonic evolution

State initialisation ←→ Pair creation of anyons
Quantum evolution ←→ Anyon braiding

Readout ←→ Anyonic fusion

lowing way. Consider an anyonic evolution, such as the one given in Figure 8.15. From
the vacuum create n anyons in pairs. This initial state, denoted by |ψ〉, signifies that each
anyonic pair is in the vacuum fusion channel. The state that corresponds to fusing these
anyons to the vacuum is denoted by 〈ψ |. The probability that they fuse back to the vacuum
in the same pairwise order is given by 〈ψ|ψ〉 = 1, as expected. Suppose we now perform
an arbitrary braiding among half of the anyons, as in Figure 8.15, described by the unitary
evolution B(A). We then pairwise fuse them with the same ordering as the pair creation.
The probability of obtaining the vacuum state at the end is then given by

〈ψ | B(A) |ψ〉 = tr(ρA(B)). (8.28)

Relation (8.28) expresses the amplitude of the braiding evolution in terms of a quantum
mechanical expectation value and in terms of the trace of the braid representation ρA(B).
Together with (8.27) we can hence express the Jones polynomials in terms of probability
outcomes

VL(A) = (−A)3w(L)dn−1 〈ψ | B(A) |ψ〉 . (8.29)

The probabilities 〈ψ | B(A) |ψ〉 can be experimentally obtained from an anyonic system with
an accuracy that improves by repeating the same experiment several times. To calculate this
expression, we need to know the writhe of the link L = (B)Markov. From (8.8) we see that
the writhe is an additive quantity that can be calculated with polynomial resources [167].

In essence, what we actually compute is the trace of the braiding matrices without the
need to evaluate each diagonal element of the braidword. The described anyonic evolution
is exactly designed for this purpose. As an alternative to the anyonic quantum simulation,
good quantum algorithms exist also for computing traces of unitary matrices. This algo-
rithmic approach is based on the Hadamard test [167]. We can begin with a completely
mixed state of n register qubits and one work qubit w prepared in the pure state

|ψw〉 =
1
√

2

(
| 0〉w + | 1〉w

)
. (8.30)

We then apply a sequence of controlled unitaries

U =

m∏
j=1

| 1〉w〈1 | ⊗ ρA(b j). (8.31)
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Measuring the work qubit in the x and y directions of the Bloch sphere finally gives the real
and imaginary parts of the normalised trace tr(ρA(B))/2n, respectively (see Exercise 8.2).

8.4 Example I: Kauffman bracket of simple links

To familiarise ourselves with the Kauffman bracket or state sum we now evaluate it for
some simple links. Our first example, L1, is the “eight figure” in Figure 8.16. Its state sum
is given by

〈L1〉 = (−A)−3 (8.32)

as it involves a single twist. Similarly for the inverted twisting, L2, of Figure 8.17 we have
the value

〈L2〉 = (−A)3. (8.33)

We now consider the link with two components, L3, shown in Figure 8.18. By employing
the state sums of the previous examples we easily obtain

〈L3〉 = −A4 − A−4. (8.34)

Finally, we evaluate the link, L4, in Figure 8.19. Its state sum is given by

〈L4〉 = A8 − A4 + 1 − A−4 + A−8. (8.35)

To evaluate the Jones polynomials of these links we need to apply relation (8.7) that states
VL(A) = (−A)3w(L)〈L〉. The first two links, L1 and L2 have w = 1 and w = −1 respectively,
so VL1 (A) = 1 and VL2 (A) = 1. Hence they have the same Jones polynomials for any A.
This is to be expected as they are both isomorphically equivalent to a simple loop. On the
other hand, w(L3) = 2 and w(L4) = 0.
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8.5 Example II: Jones polynomials from Chern-Simons
theories

Here we investigate how the Jones polynomials can be derived from the SU(2) Chern-
Simons theories that we studied in Chapter 7. The specific form of the Jones polynomials
was determined by introducing the Skein relations, in Figure 8.7. Here, we demonstrate
that the expectation values of Wilson loops 〈W(L)〉 in the SU(2) Chern-Simons theories
can be decomposed in the same way as the state sums do under Skein relations. This
decomposition is compatible with the Reidemeister moves II and III. The invariance of
this expectation value under continuous deformations of the loop L means that 〈W(L)〉 is
invariant under twists of the loop as well. This property is the Reidemeister move I that
finally identifies 〈W(L)〉 with the Jones polynomials.

Let us see in detail how the SU(2) Chern-Simons theory is compatible with the Skein
relations. Consider the expectation value 〈W(L)〉 of a link L in space M = S 3. We take
all link components to be in the two-dimensional fundamental representation of SU(2). A
useful bipartition of the link L is given in Figure 8.20(a). There, one part, LR, includes
a single crossing of two strands and the other part, LL, includes the rest of the link. The
corresponding spaces are denoted MR and ML, respectively. Substituting the crossing in
MR with any of the two shapes in M′R or M′′R undoes the braiding between the two relevant
strands and gives a simpler link. In terms of the expectation value 〈W(L)〉 this substitution
is motivated in the following way. Consider the individual parts ML and MR. Each one
supports a two-dimensional Hilbert spaceHR, as they correspond to the fusion of the four
points that are given by the intersections of the link and the dotted sphere, shown in Figure
8.20(a). As these points are all described by the fundamental representation of SU(2), as
in (7.56), they have only two possible fusion outcomes. So the Hilbert space HR is two-
dimensional. Let us denote the vectors that correspond to MR, M′R and M′′R as ψ, ψ′ and ψ′′,
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tFig. 8.21 Consider the parts of the link LR, L′R and L′′R that correspond to MR, M′R and M′′R , respectively.
The clockwise exchange of the first two endpoints of L′R gives rise to L′′R . The counterclockwise
exchange of these two points gives rise to LR.

respectively. As all these three vectors belong to the same two-dimensional Hilbert space
they are linearly dependent, i.e. we can write

αψ + βψ′ + γψ′′ = 0, (8.36)

for some complex numbers α, β and γ.
The link parts LR and L′′R can be obtained from L′R by exchanging two points, as shown in

Figure 8.21. Denote by B the unitary operator that describes this exchange. Then the states
corresponding to the LR and L′′R configurations are given by ψ = B−1ψ′ and ψ′′ = Bψ′.
Hence (8.36) becomes

αB−1ψ′ + βψ′ + γBψ′ = 0. (8.37)

Let us move to the diagrammatic representation of this equation by assigning parts of
links to these braiding operations, as shown in Figure 8.22. We can use relation (8.37)
recursively at all crossings of the link in order to undo all braids of its strands and reduce
it to a sum of completely non-entangled loops. Assume now that (8.37) is equivalent to the
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tFig. 8.23 (a) Diagrammatic representation of (8.37) for α = A, β = −(A2 − A−2) and γ = −A−1. Rotating the
(a) graph clockwise by π/2 gives (b). A linear combination of (a) and (b) gives (c), which is the
known Skein relation, given in Figure 8.7.

Skein relations which are the defining relations for the Jones polynomials. This reduction
process demonstrates that the expectation value 〈W(L)〉 gives the Jones polynomial for any
link.

We now show the equivalence between (8.37) and the Skein relations. As 〈W(L)〉 is
invariant under continuous deformations of the link L, the decomposition (8.37) has to be
compatible with the Reidemeister moves II and III. Following a similar process to the one
we used to determine the coefficients of the Skein relations in Subsection 8.1.2 we obtain

α = A, β = −(A2 − A−2) and γ = −A−1 (8.38)

(see Exercise 8.3). Now, let us consider the diagrammatic form of (8.37), which is parame-
terised by A, as shown in Figure 8.23(a). Rotating the diagram in Figure 8.23(a) clockwise
by π/2 gives Figure 8.23(b). Linear combinations of these two equations gives Figure
8.23(c). This is indeed the Skein relation presented in Figure 8.7. For consistency of (8.37)
with respect to Reidemeister move II we also have 〈W(L ∪ ©)〉 = −(A2 + A−2)〈W(L)〉,
where L is an arbitrary link (see Exercise 8.3). Note that the brackets now denote expecta-
tion values rather than the state sums we saw in (8.1). Hence, the expectation value 〈W(L)〉
of the SU(2) Chern-Simons theory gives the Jones polynomial. It has been shown by ex-
plicit evaluation of the expectation value that it is A = iei π

2(k+2) for the SU(2) level k theory
[68].



176 The Jones polynomial algorithmt
Summary

The quantum simulation of Jones polynomials manifests a beautiful connection between
mathematics, physics and information science. Jones polynomials are link invariants that
remain unchanged when we apply continuous link deformations. Such deformations might
produce link shapes that seem completely inequivalent to the original one. Hence, being
able to efficiently compute the Jones polynomials can be very useful in many research
disciplines that investigate the properties of extended objects.

To present the Jones polynomials we used two approaches. We first assigned numbers
to geometrical characteristics of the links in a way that the final number remains invariant
under continuous transformations of the link strands. This approach demonstrated that the
Jones polynomials are actually link invariants. Then we derived these polynomials with
an algebraic approach. We used the braid group to assign matrix representations to the
braided strands of a link. The resulting braiding matrix actually describes the quantum
state evolution of exchanged anyons whose worldlines span the strands of the link. This
approach relates the Jones polynomials with a physical observable. From this point it is
possible to envision a quantum simulation with anyons that can extract the expectation
value of these observables.

The anyonic evolution that gives rise to the Jones polynomials is a quantum simulation
that solves a particular computationally hard problem [165]. A quantum algorithm, based
on qubits and quantum gates instead of anyons, has also been developed for this task [167].
This algorithm provides a new class of quantum algorithms that is different in structure
from the Shor’s factoring algorithm and Grovers searching algorithm. This fact could be
proven useful in addressing new algorithmic problems.

Exercises

8.1 Demonstrate that the Kauffman bracket of the trefoil is given by −A5 − A−3 + A−7.
What is the corresponding Jones polynomial?

8.2 Show how the Hadamard test presented in (8.30) and (8.31) works for the case of a
two-dimensional unitary matrix.

8.3 Demonstrate that requiring (8.37) to be compatible with the Reidemeister moves II
and III gives (8.38) and that 〈W(L∪©)〉 = −(A2+A−2)〈W(L)〉, where L is an arbitrary
link. [Hint: It might be easier to give (8.37) a form similar to the Skein relations].



9 Topological entanglement entropy

To perform topological quantum computation we first need to experimentally realise anyons
in a topological system. These systems are characterised by intriguing non-local quantum
correlations that give rise to the anyonic statistics. What are the diagnostic tools we have to
identify if a given system is indeed topological or not? Different phases of matter are char-
acterised by their symmetries. This information is captured by order parameters. Usually,
order parameters are defined in terms of local operators that can be measured in the labo-
ratory. For example, the magnetisation of a spin system is given as the expectation value of
a single spin with respect to the ground state. Such local properties can describe fascinat-
ing physical phenomena efficiently, such as superconductivity, and can pinpoint quantum
phase transitions.

But what about topological systems? Experimentally, we usually identify the topological
character of systems, such as the fractional quantum Hall liquids, by probing the anyonic
properties of their excitations [85]. However, topological order should be a characteris-
tic of the ground state [174, 175]. The natural question arises: is it possible to identify a
property of the ground state of a system that implies anyonic excitations? The theoretical
background that made possible to answer this question came from entropic considerations
of simple topological models. Hamma, Ionicioiu and Zanardi [176] studied the entangle-
ment entropy of the toric code ground state and noticed an unusual behaviour. Even though
the ground state has a short correlation length due to the energy gap above it, long range
correlations of topological origin are also present. Consequently, Kitaev and Preskill [177]
and simultaneously Levin and Wen [178] introduced the concept of topological entangle-
ment entropy or just topological entropy. This quantity successfully identifies long range
correlations of topological origin.

As topological entropy can identify if a given system is topologically ordered or not, it
provides a measure to study the transitions between topologically ordered and non-ordered
phases of matter. It also offers a quantitative criterion to study how temperature or exter-
nal perturbations affect topological order. However, we should bear in mind that the re-
silience of topological quantum computation is not necessarily identical with the resilience
of topological order. A computation allows for active manipulations that could potentially
neutralise the effect of errors.

In the following we give an overview of the entanglement entropy of two-dimensional
systems. Its striking characteristic is that topological order naturally arises as a particular
case of the few possible entropic behaviours. Next we present the definitions of topological
order given by Kitaev and Preskill [177] as well as Levin and Wen [178]. Although both
approaches are equivalent, each one offers a different perspective on topological entropy.
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tFig. 9.1 A two-dimensional quantum system prepared in its ground state is partitioned in two regions, A
and B, via the boundary ∂A. The entanglement entropy of the reduced part A is given, up to
small corrections, by S A = α|∂A| − γ, where α and γ are system dependent constants and |∂A| is
the length of the boundary.

Finally, we derive the connection between topological order and entanglement entropy for
the case of quantum double models [179].

9.1 Entanglement entropy and topological order

Before we introduce the concept of topological entropy, we define the entanglement en-
tropy and we examine some of its generic properties. Entanglement entropy is defined in
terms of the von Neumann entropy

S (ρ) = −tr(ρ log ρ) (9.1)

of a density matrix ρ in the following way. Consider a two-dimensional interacting many-
particle system prepared in its ground state and assume there is a non-zero energy gap
above it. We take the system to be in a pure state, i.e. its temperature is zero and it is
isolated from its environment. Due to the energy gap the ground state |Ψ〉 of the system
has a finite correlation length, ξ. This length parameterises the exponential decay of two-
point correlations of the ground state in terms of local observables. To be more explicit,
we now consider an operator O(r) defined at the neighbourhood of a point r of the system.
For a gapped system we expect that

〈O(r1)O(r2)〉 − 〈O(r1)〉〈O(r2)〉 ∼ exp
(
−
|r1 − r2|

ξ

)
, (9.2)

where the expectation values are with respect to the ground state |Ψ〉. This relation signifies
that correlations between any two points are exponentially suppressed with respect to their
relative distance.

We now consider the bipartition of a system in A and its complement B, separated by the
boundary ∂A, as shown in Figure 9.1. Suppose the density matrix of the system is given by

ρ = |Ψ〉 〈Ψ | . (9.3)
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tFig. 9.2 As the system is gapped the correlation length is finite. Hence, the correlations between regions
A and B come predominantly from a strip around the boundary. The contributions to the
entanglement entropy, S A, come from the correlations between the strips in A and the strip in B.

Denote by ρA the reduced density matrix of A obtained by tracing the part of the system in
the complement B, i.e.

ρA = trBρ. (9.4)

The entanglement entropy of A is then defined as the von Neumann entropy of ρA, i.e.

S A = −tr
(
ρA log ρA

)
. (9.5)

The logarithm of ρA can be calculated from its eigenvalues λi by bringing the entropy
finally into the form

S A = −
∑

i

λi log λi. (9.6)

This entropy can be used to measure the correlations of the geometrical region A with
respect to its environment B.

Assume now that the entanglement entropy can be written as

S A = α|∂A| − γ + ε(|∂A|−β), (9.7)

where α, γ are real numbers and β > 0. So ε(|∂A|−β) tends to zero as the size of the
boundary, |∂A|, tends to infinity. By this limit we mean that all relevant scales in the shape
of ∂A, such as its radius if it is a circle or its smallest side if it is a rectangle, are much
larger than the correlation length, ξ, of the ground state. Relation (9.7) provides a generic
description of the entropy. Let us justify this form for S A. No “volume” term, |A|, appears
as our system is in a pure state. Indeed, if every particle of the system was entangled with
the environment then it would individually contribute to the entropy and a total term |A|
would emerge.

Let us now motivate the “area” term |∂A| that describes the behaviour of gapped systems.
If |Ψ〉 was a tensor product state between the A and B parts, say |Ψ〉 = |ΨA〉 ⊗ |ΨB〉,
then S A = 0. The entropy S A only becomes non-zero if the two regions are non-trivially
entangled. In other words, the entanglement entropy, S (ρA), measures to what extend part
A of the system is entangled with part B. As the correlation length of the system is finite,
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we cannot expect a particle deep in the A region to be entangled with a particle deep in B.
Hence, the only contribution to the entanglement between A and B comes from the regions
near the boundary, ∂A, as shown in Figure 9.2. Actually, we expect a strip at each side
of ∂A, as wide as the correlation length, to be responsible for the main contribution to
S (ρA), which should be proportional to |∂A|. The coefficient α in (9.7) is a non-universal
quantity that depends in general on the small scale properties of the ground state, such as
the correlation length ξ.

Of particular interest to us is the possible presence of a constant term γ. As shown in
[177, 178], systems with a non-zero γ are topologically ordered. Indeed, γ is related to the
total quantum dimensionD of the model, in the following way

γ = logD = log
√∑

q

d2
q . (9.8)

Here dq is the quantum dimension associated with the anyon q and the summation runs
through all the anyonic species of the model. In Section 9.3 we demonstrate this relation
for the case of the quantum double models.

Let us consider the significance of γ in (9.7) in terms of the entropic properties of the
system. In a sense, this constant term is also a boundary contribution. It measures the
entropy associated with the non-local correlations between A and B, i.e. it characterises
global features of the entanglement in the ground state. A non-zero value of γ shows that
there is an additional order in the system that reduces the entropy by a constant amount.
This order needs to be topological in nature as γ does not depend on the particular shape
of the boundary.

From (9.8) we see that γ directly determines the quantum dimension D. For example,
when the system does not posses anyons, then D = 1 as the quantum dimension gets
contributions only from the “vacuum”. As the vacuum corresponds to the state without
anyons we conclude that γ = 0 for systems that do not support anyons. Knowing the exact
value of γ is not enough to uniquely determine a topological model as there can be several
topological models with the same D. Nevertheless, we now have a way to distinguish
whether a system possesses topological order or not by determining whether γ , 0 or
γ = 0, respectively.

9.2 Topological entropy and its properties

To quantify the non-local properties of entanglement that occur in topological systems
we employ the von Neumann entropy of a reduced density matrix. Starting from (9.7), it
is possible to distinguish the topological features from the non-topological ones. Indeed,
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from the entropy of particular geometric configurations we can isolate the constant term γ,
as we shall see in the following.

9.2.1 Definition of topological entropy

We initially present the approach taken by Kitaev and Preskill [177]. Consider a gapped
system defined on a closed surface Σ, e.g. the surface of a sphere. We partition Σ in four
regions, A, B, C and D, as shown in Figure 9.3. Care is taken, that the typical size of
each partition is much larger than the correlation length of the ground state. Then the
entanglement entropy is given by

S X = α|∂X| − γ, (9.9)

where X is region A, B, C or D. The topological part can be obtained from the following
linear combination of entropies

S topo = S A + S B + S C − S AB − S AC − S BC + S ABC , (9.10)

where the entropy S AB is evaluated for the composite region of A and B and so on. We call
S topo the topological entanglement entropy. By direct substitution of (9.7) we can show
that

S topo = −γ. (9.11)

Indeed, the contributions in S topo from all the boundary terms |∂X| are cancelled out. For
example, the boundary between A and D in Figure 9.3 appears in S A and S ABC with positive
sign, while it appears with negative sign in −S AB and −S AC . On the other hand, the constant
term appears three times with positive sign and four times with negative giving eventually
a net γ contribution. Four regions is the least number we can use to isolate the topological
contribution [179].

Definition (9.10) provides a way to isolate the constant term γ by evaluating the entropies
of different regions of a system. If S topo is zero, then no topological order exists. If it is non-
zero then the system is necessarily topologically ordered, though loopholes for this test of
topological order and their resolutions have been pointed out [180]. The order parameter γ
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tFig. 9.4 (a) Deformation on the boundary between C and D. (b) Deformation in the position of the triple
point between B, C and D. The topological entropy S topo remains invariant under both (a) and (b)
deformations.

has been employed as a defining relation for the study of topological order in a variety of
systems, such as the fractional quantum Hall effect [181] and Kitaev’s honeycomb lattice
model [117] as well as systems subject to temperature [182, 183, 179], generalisations to
higher dimensions [184] and so on [185, 186, 187].

9.2.2 Properties of topological entropy

From the explicit form γ = logD = log
√∑

q d2
q it is easy to see that the topological

entropy depends only on the type of anyonic species that can be supported in the system. In
particular, S topo is independent on the shape and size of the regions A, B, C and D employed
in the definition (9.10) as long as their typical size is much larger than the correlation length
of the ground state. Only the topological configuration of these regions, which is encoded
in the neighbouring relation between them, is relevant. We call this property the topological
invariance of S topo.

Notice that the detailed characteristics of the Hamiltonian, that give rise to the topologi-
cal model, do not enter the definition of S topo. The only condition is that any relevant scale
in the system, such as the size of the partitioning regions, has to be large with respect to
the correlation length, ξ, of the ground state. The details of a model at small length scales
are not relevant to its topological behaviour. This characteristic signifies the universality of
topological entropy as it is able to describe different Hamiltonians that give rise to the same
topological behaviour. In particular, smooth deformations of a Hamiltonian cannot change
S topo if they are not inducing a quantum phase transition. These properties of topological
entropy are demonstrated in the following with simple considerations.

Topological invariance

To demonstrate topological invariance we need to show that deformations in the shape of
the regions, shown in Figure 9.4, do not alter the value of S topo [177]. From the configu-
ration of the partitions we see that there are only two possible distinct classes of boundary
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away from the boundaries or on the boundaries. In the latter case we can deform the relevant
boundary in order to have h included in a single region.

deformations. The first is changing one of the boundaries of the regions and the second is
moving a point where three boundaries meet.

For concreteness we deform the boundary between regions C and D, as shown in Figure
9.4(a), without affecting regions A or B. This boundary deformation changes the topologi-
cal entropy by the amount

∆S topo = (∆S ABC − ∆S BC) − (∆S AC − ∆S C). (9.12)

If the above deformation is far enough from the other boundaries, the entropies S A, S B and
S AB change only by a negligible amount. This follows from the presence of a finite correla-
tion length in the system that suppresses correlations between distant events exponentially.
Hence, the change in the entropy by the deformation should be more or less the same if
viewed from the region ABC or BC alone, as A is distant to the deformation. Similarly,
the change in the entropy should be the same for the region AC or C alone. This makes
∆S topo = 0, signifying the independence of topological entropy on the detailed geomet-
ric characteristics of the partitioning regions. Of course, this result holds for deformations
induced to any single boundary.

We now consider the deformation of the triple point between regions B, C and D, as
shown in Figure 9.4(b). To write down the corresponding change in S topo we need the
following property. For a pure state the entropy of the reduced density matrix from a bipar-
tition in R and its compliment R̄ satisfies S R = S R̄. By direct evaluation we have

∆S topo = (∆S B − ∆S AB) + (∆S C − ∆S AC) + (∆S D − ∆S AD). (9.13)

As the region A is far from the dislocation of the triple point its appearance in the entropy
of the composite regions should not affect the change in the topological entropy. The same
reasoning applies to the dislocation of any other triple point of the graph in Figure 9.3.
Topological entropy is hence invariant under geometrical distortions of its regions as long
as the general topological configuration of these regions remains intact.
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Universality

Next, we would like to show that topological entropy is not affected when the Hamiltonian
of the system is smoothly deformed. This means that S topo can be employed to describe the
behaviour of general families of Hamiltonians exhibiting similar topological behaviours.
We initially assume that the Hamiltonian is a sum of local terms and that the deformation
is restricted to a small region. We require that the deformation, not only keeps the system
far from any critical point, but also that the correlation length stays small compared to the
size of the partition regions given in Figure 9.3 at all times.

The central argument is that any deformation of the Hamiltonian by a localised interac-
tion h,

H → H′ = H + h (9.14)

away from the boundaries of the regions, as shown in Figure 9.5, affects the ground state
of the system only locally. Hence, it has only a negligible effect on its behaviour near
the boundaries and does not affect S topo. We now assume that the Hamiltonian H changes
in the vicinity of a boundary. Then we can employ the invariance of topological entropy
under boundary deformations and move the boundary away from the region where the
deformation of the Hamiltonian is to take place. By the previous argument we can smoothly
take the system to the new Hamiltonian configuration, H′, without changing the value
of S topo. As S topo with respect to H′ is topologically invariant we can again move the
boundaries without changing the value of the topological entropy. Hence, we can bring
the boundary back to its original position. This shows that the topological entropy is a
universal quantity with each of its values corresponding to a whole class of Hamiltonians
with the same topological order.

9.2.3 Topological entropy and Wilson loops

In this subsection we take a different approach to topological entropy [178]. We show that
a change of the entropy S A from the value S A = α|∂A|, expected from local correlations
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alone, to the value S A = α|∂A| − γ can be attributed to a Wilson loop operator acquiring
non-zero expectation value. This loop type of order is revealed by entropic considerations
in the following way.

Consider the entanglement entropy of the regions depicted in Figure 9.6. The constant
part can be isolated by the following combination of entropies

S topo =
1
2

[(S A − S B) − (S C − S D)] . (9.15)

Substituting (9.7) into (9.15) we find S topo = −γ. This relation is exact in the limit where
the typical sizes of the involved regions X are all large enough so that ε(|∂X|−β)→ 0. Note
that A, B, C and D are now different partitions of the same system rather than parts of the
same partition as employed in (9.10).

Relation (9.15) gives an intuitive picture for the topological character of γ. As the sys-
tem is gapped, entanglement entropies acquire, in general, contributions from short range
correlations. The difference S A −S B has contributions that come from the upper horizontal
part of the region A. Similarly, non-zero contributions to S C − S D come from the same
upper part. If the entropies only had contributions from local correlations, i.e. if they were
of the form S X = α|∂X|, their difference would go to zero when the respective regions
become sufficiently large. The only possible contribution in (9.15) could arise from a non-
local operator, like a Wilson loop, that wraps non-trivially around the region A. Such an
operator has support on all the regions A, B, C and D of Figure 9.6. Its contribution cannot
be present in the entropies of S B, S C or S D, so it cannot be cancelled. A non-zero S topo

hence signals a non-zero expectation value of a Wilson loop operator, even if the exact
form of this operator is not known.

The above discussion reveals the connection between topological entropy and Wilson
loop operators. A non-zero value of S topo means that there should be a certain loop oper-
ator with a non-zero expectation value. This remains true for arbitrarily large loop sizes.
This type of correlation might seem in stark contrast to the local correlations that one ex-
pects to find in a gapped system. The reconciliation comes from the following observation.
The exponential decay of correlations of gapped systems, given in (9.2), corresponds to
operators O(r) that are local, i.e. defined in a neighbourhood of a given point r. In contrast
to this, Wilson loops are non-local operators that have non-trivial action along a whole
loop.

A non-zero expectation value of a Wilson loop operator directly implies a non-local
structure in the ground state. This is indeed the general approach of the string-net con-
densation models presented in [178]. These models consist of a large class of topological
models built exactly upon the loop structure of ground states. Nevertheless, the possibil-
ity to find a Wilson loop operator that acquires a non-zero expectation value is a general
property of any topological model. Characteristics such as topological degeneracy or any-
onic statistics can be expressed in terms of such operators, as we have seen in the previous
chapters.
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9.3 Example I: Quantum double models

Here we demonstrate that the entanglement entropy of topological models can always be
written as

S A = α|∂A| − γ. (9.16)

We show this for the particular case of the quantum double models that we encountered
in Chapter 5. The approach [179], generalises the one taken in [176]. It employs the fact
that the entanglement entropy measures the entanglement properties between two distinct
regions. The Schmidt decomposition of the ground state becomes particularly useful in
analysing this bipartition. This decomposition gives a convenient expression of states in
terms of their subsystems. So we can straightforwardly evaluate the corresponding en-
tropy. For completeness, we also briefly review the quantum double models with a slightly
different approach than the one taken in Chapter 5.

9.3.1 Hamiltonian and its ground state

Hamiltonian

Let us consider a square lattice defined on a sphere. The model works in pretty much the
same way in an arbitrary planar lattice. We employ a finite group G with |G| elements. The
Hilbert space H = {| g〉 , g ∈ G} of pairwise orthogonal states | g〉 is assigned to each link
of the lattice. As we have seen in Chapter 5, the lattice Hamiltonian of the quantum double
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model, D(G), is defined by

H = −
∑

v

A(v) −
∑

p

B(p), (9.17)

where the summations run over the vertices v and the plaquettes p of the lattice. The action
of the projection operators A(v) and B(p) is given in Figure 9.7. The A(v) operator sym-
metrises the states neighbouring the v vertex with respect to all group elements of G. The
B(p) operator projects the states of the four links of the p plaquette to the state that encodes
trivial flux.

Ground state

To write down the ground state of the Hamiltonian (9.17) we follow the same approach,
which we employed for the toric code in Subsection 5.2.1. We observe that all the A(v)’s
and B(p)’s commute with each other and with themselves for any v and p (see Exercise
5.1). As a result, the ground state can be evaluated as the state that minimises the eigenvalue
of each of the A(v) and B(p) terms. For that we first define the reference state | e〉 = | e...e〉,
which assigns the identity group element to every link. We notice that

B(p) | e〉 = | e · · · e〉 = | e〉 , (9.18)

for all p, since δh4h3h2h1,e = 1 for h1 = h2 = h3 = h4 = e. Hence, | e〉minimises the energy of
the B(p) contributions to the Hamiltonian. We then project the | e〉 state on the eigenstate of
the A(v)’s with eigenvalue one to minimise the contribution of the A(v) term. The resulting
unormalised ground state is given by

|Ψ〉 =
∏

v

A(v) | e〉 =
∑
g∈G

R(g)|e〉. (9.19)

Here g = (g1, . . . , gN) belongs in the extended group G = G× · · · ×G, which describes any
possible rotation of the link states of the lattice, and R is the representation of G determined
by the form of the A(v) operators in Figure 9.7(a). Importantly, R(g) is constructed out of
products of A(v) which are elementary loop operators wrapped around vertices.

9.3.2 Topological entropy

Relation (9.19) gives the ground state in terms of equal superpositions of all possible ele-
ments R(g) applied to the reference state | e〉. To understand the properties of |Ψ〉, we first
analyse the properties of the group G. This allows us to perform the Schmidt decomposi-
tion of the ground state and, thus, to evaluate the entanglement entropy.

Schmidt decomposition

Consider a many-particle system split in two subsystems A and B. In the following {| ei〉 , i =

1, ..., n} denotes the orthonormal basis of the A part and {| fi〉 , i = 1, ...,m} denotes the
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orthonormal basis of the B part. A general state of the system can always be written as

|Ψ〉 =
1
√

M

M∑
i=1

M∑
j=1

ai j | ei〉A ⊗
∣∣∣ f j

〉
B
, (9.20)

where M = min{n,m} and where the ai j’s are normalised so that
∑M

i=1
∑M

j=1 |ai j|
2 = M. The

Schmidt decomposition [12] asserts that unitaries U and V can be found, for which the
state of the system can be written as

|Ψ〉 =
1
√

M

M∑
i=1

ci | ui〉A ⊗ | vi〉B . (9.21)

Here | ui〉 = U | ei〉 and | vi〉 = V | fi〉 are new orthonormal basis states of A and B, respec-
tively, while the ci’s are real non-negative numbers with

∑M
i=1 c2

i = M.
The Schmidt basis in terms of | ui〉 and | vi〉 makes it easy to calculate reduced density

matrices and, from there, the von Neumann entropy of subsystem A. Consider the density
matrix of the state |Ψ〉 given above

ρ = |Ψ〉 〈Ψ | =
1
M

M∑
i, j=1

cic j | ui〉A

〈
u j

∣∣∣ ⊗ | vi〉B

〈
v j

∣∣∣ . (9.22)

The reduced density matrix with respect to region A is then given by

ρA = trBρ =
1
M

M∑
i, j=1

cic j | ui〉A

〈
u j

∣∣∣ ⊗ 〈vi|vi〉B〈v j|vi〉 =
1
M

M∑
i=1

c2
i | ui〉A〈ui | . (9.23)

The eigenvalues of the diagonal matrix ρA are given by

λi =
c2

i

M
for i = 1, ...,M. (9.24)

Hence, the von Neumann entropy is given by

S (ρA) = −

M∑
i=1

λi log λi = −
1
M

M∑
i=1

c2
i log c2

i + log M. (9.25)

In the particular case, where ci = 1 for all i, we have S (ρA) = log M. This is the case we
shall employ in the following.

Group decomposition

As the elements of G can have arbitrary configurations on the two-dimensional lattice, we
would like to group them in a simple geometrical way. Consider a region A, defined as a
collection of contiguous edges, and its complement B, as shown in Figure 9.8. Ultimately,
we want to derive an expression for the entropy of the reduced density matrix ρA of the
ground state |Ψ〉 in region A. We can distinguish amongst three types of vertices, those in
A, those in B and those touched by edges belonging to A and B. The set of vertices of the
latter type is referred to as ∂A, which constitute the boundary between the two regions. Both
regions A and B are taken to be connected and their boundary is taken to always separate
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links of both regions, i.e. for each vertex s ∈ ∂A, there exist vertices s′ ∈ A, s′′ ∈ B adjacent
to s.

As the ground state is stabilised by all the interaction terms of the Hamiltonian (9.17) its
properties emerge from the properties of the group G. Thus, we would like to partition the
group elements of G in terms of elements that act only on the links of region A or only on
the links of region B. We define two subgroups in G by GA and GB as

GA = {g ∈ G; g j = e if s j < A}, GB = {g ∈ G; g j = e if s j < B}. (9.26)

The subgroups GA and GB act nontrivially only on the links of regions A and B, respec-
tively. In the following we call the elements of GA as gA ⊗ 1B, or gA with the identity
implied and the elements of GB as 1A ⊗ gB or just gB. We now define the quotient group

GAB =
G

GA ×GB
. (9.27)

This structure implies that two elements h,h′ ∈ GAB are equal if and only if h j = h′j for
every vertex s j ∈ ∂A. As a conclusion, a general element g ∈ G can always be written as

g = (gA ⊗ gB) h, (9.28)

where gA ∈ GA, gB ∈ GB and h ∈ GAB. This means, we achieved a decomposition of G in
terms of the group elements that belong to A, B and their boundary ∂A.

Ground state decomposition

The above decomposition of the group according to the bipartition of the system helps us
to decompose its ground state. By a straightforward substitution of (9.28) into (9.19), we
have

|Ψ〉 =
∑

h∈GAB,gX∈GX

(gA ⊗ gB) h | e〉 = QA ⊗QB

∑
h∈GAB

h|e〉, (9.29)

where QX =
∑

gX∈GX
gX . The operators QX are local in the X region so they do not change

the entanglement properties between regions A and B [176]. Similarly to the von Neumann
entropy (9.25) of the state (9.21) the only contribution of (9.29) to the entropy comes
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from the summation part over orthogonal states. There might be inequivalent h elements
in (9.29) that have the same action on the state | e〉. In order to find all the independent
vectors h | e〉 with h ∈ GAB we now employ the following analysis. Consider the diagonal
subgroup Gd ⊂ G with elements

r = (r, · · · , r), (9.30)

where r ∈ G. Then

r | e〉 =
∣∣∣ rer−1...rer−1

〉
= | e〉 , (9.31)

i.e. the r’s act trivially on the reference state. So, some of the terms in the summation are
equal to each other. To avoid that we take the further quotient GAB/Gd and we decompose

h = fr, (9.32)

where f ∈ GAB/Gd is non-diagonal. As there are in total |G| such r diagonal elements, we
can write

|Ψ〉 = QA ⊗QB

∑
r∈G

∑
f∈GAB/Gd

f r | e〉 = |G|QA ⊗QB

∑
f∈GAB/Gd

f | e〉 , (9.33)

where the f summation runs over the remaining |GAB|/|G| distinct elements of GAB/Gd. All
the states f | e〉 are now independent. So we can apply the Schmidt decomposition (9.21) to
the ground state and calculate its entanglement entropy.

Entanglement entropy

In order to bring the ground state in the Schmidt decomposition form, and from there
calculate S (ρA), we need to partition f | e〉 in two orthogonal basis states. Let f denote an
arbitrary group element of GAB/Gd and let f = f̄A ⊗ f̄B denote its decomposition into an
operator acting on A and an operator acting on B. We then have 〈e | f̄X | e〉 = 0 for both
X = A, B as f , r for all r ∈ Gd (see Exercise 9.3). Subsequently,

|Ψ〉 = |G|
∑

f∈GAB/Gd

(
QA f̄A | e〉A

)
⊗

(
QBf̄B | e〉B

)
, (9.34)

is actually a Schmidt decomposition of the ground state. This form allows us to appropri-
ately normalise |Ψ〉. Employing (9.25) for ci = 1 for all i, as it is the case in (9.34), we can
show that the entanglement entropy is of the form

S (ρA) = log
|GAB|

|G|
= log |GAB| − log |G|, (9.35)

where |GAB|/|G| is the total number of orthogonal states in the Schmidt decomposition
(9.34). Here |G| is the order of the group G, i.e. the quantum dimension of the anyonic
quantum double model. As |GAB| = |G||∂A|, where |∂A| is the number of vertices on the
boundary of A, we finally have

S (ρA) = log |G| (|∂A| − 1) . (9.36)
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Hence, the topological entropy is γ = log |G|. This is a general result that gives the topologi-
cal entropy for all quantum double models. For the toric code case with quantum dimension
D = |G| = 2 we have γ = log 2.

Summary

In this Chapter we observed that topological behaviour of quantum systems naturally ap-
pears in the comprehensive description of entropy. The most general form of the entangle-
ment entropy of a gapped two-dimensional system prepared in a pure state, with respect to
a bipartition A and B, is necessarily given by

S (ρA) = α|∂A| − γ. (9.37)

In addition to the area law, α|∂A|, dictated from short range correlations we need to include
a constant term γ. A non-zero value of this term reveals non-local correlations present in
the topological model. In particular, we have

γ = logD, (9.38)

whereD is the total quantum dimension of the topological model. As it is common to sci-
ence, this discovery came by considering the entropy of a specific example, the toric code
[176], where the peculiar presence of a constant term was observed. The actual definition
of topological entanglement entropy S topo = −γ in terms of physical observables and the
study of its properties was presented later by Kitaev and Preskill [177] and by Levin and
Wen [178]. Measuring topological order in an experiment is expected to be a difficult task,
which reflects the high complexity involved in detecting non-local order.

The topological entropy is a diagnostic tool that identifies if a system is topologically
ordered or not. If topological order is identified, then we know that the system can sup-
port anyons. We can then start envisioning schemes for performing topological quantum
computation. As γ is a function of the total quantum dimension, D, of a system, it cannot
distinguish successfully between different anyonic models that have the same D. Direct
study of anyonic properties could eventually provide this information.

Exercises

9.1 Demonstrate relations (9.11), (9.12), (9.13) and (9.15).
9.2 Find the most general form of S topo defined with the partitions given in Fig. 9.3 that

is invariant under arbitrary deformations of the boundaries. [Hint: To solve that take
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an arbitrary linear combination of the entropies and determine the coefficients by de-
manding invariance of S topo with respect to boundary and triple point deformations
[179]].

9.3 Consider an element f that belongs in GAB/Gd defined in (9.27) and (9.30). This
element acts non-trivially on both A and B. Suppose f = f̄A⊗f̄B. Show that 〈e | f̄X | e〉 =

0 for X = A or B, where | e〉 is defined in (9.18). [Hint: Suppose it is fault. See also
[179]].



10 Outlook

In the previous chapters we introduced anyons and their properties, we presented how
to perform topological quantum computation and studied several examples of topological
models. There is a wide variety of research topics concerned with topological quantum
computation. Among the many open questions, two have a singular importance. The first
natural question is: which physical systems can support non-Abelian anyons? Realising
non-Abelian anyons in the laboratory is of fundamental and practical interest. Such ex-
otic statistical behaviour has not been yet encountered in nature. The physical realisation
of non-Abelian anyons would be the first step towards the identification of a technologi-
cal platform for the realisation of topological quantum computation. The second question
concerns the efficiency of topological systems in combating errors. It has been proven that
the effect of coherent environmental errors in the form of local Hamiltonian perturbations
can be efficiently suppressed without degrading the topologically encoded information
[77]. Nevertheless, there is no mechanism that can protect topological order from inco-
herent probabilistic errors. Topological systems nevertheless constitute a rich and versatile
medium that allow imaginative proposals to be developed [79, 80].

Regarding the first question we can identify two main categories of physical proposals
for the realisation of two-dimensional topological systems: systems that are defined on
the continuum and discrete systems defined on a lattice. It is natural to ask, which are the
most promising architectures to realise in the laboratory. Undoubtably, fractional quantum
Hall liquids are so far the most studied topological systems. They comprise of a two-
dimensional cloud of electrons in the presence of a strong perpendicular magnetic field.
There is a big variety of topological phases that arise as a function of the magnetic field
and of the density of electrons [188, 189, 190, 191]. The most striking characteristic is that
in some of these phases the particles appear to have fractionalised charge in units of the
electron charge. This was first experimentally verified by Tsui, Stormer and Gossard [192].
Subsequently, the charge fractionalisation was explained theoretically by Laughlin [10] in
terms of Abelian anyons which emerge as quasiparticles in this high correlated system.

The fractional quantum Hall effect is currently the only experimental setting we have that
promises the realisation of non-Abelian anyons. The theoretical treatment of this system
is limited due to the interactions between the electrons that make the problem too hard to
solve. So experiments are crucial to determine if a given fractional quantum Hall setting
can support non-Abelian anyons. The current focus of research is on the filling fraction
ν = 5/2 that is expected to support the non-Abelian anyons which correspond to the SU(2)
level 2 Chern-Simons theory. These anyons are similar to the Ising ones, so they are not
universal for quantum computation. Nevertheless, inspiring proposals exist to rectify this
[82, 83, 84]. Filling fraction ν = 12/5 is expected to correspond to the SU(2) level 3 non-
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Abelian anyons. As these are equivalent to the Fibonacci anyons they can support universal
quantum computation.

An important diagnostic tool of fractional quantum Hall liquids is the implementation
of interference experiments. These can be used to detect the anyonic character of quasi-
particles. By particular configurations of the liquid sample we could isolate and detect
Abelian [193] and non-Abelian [194, 195, 196, 197] statistical properties. Together with
the braiding operations such measurements can be employed to perform topological quan-
tum computation [198]. Presently it is nevertheless not known how to realise the transport
of quasiparticles in fractional quantum Hall liquids. Hence, we are not yet able to directly
implement the braiding of anyons. The measurement of anyons can be employed instead in
order to realise a version of one-way quantum computation with static anyons [199, 200].
Using this scheme measurements of the topological charge can be used to generate the
braiding transformations used in topological quantum computation without the need to
physically transport anyons. Being able to bypass the anyonic transport overcomes a cru-
cial obstacle in the implementation of topological quantum computation with fractional
quantum Hall liquids.

Other electron systems are the p-wave superconductors that can support fractionally
charged vortices with anyonic statistics [138, 140]. They have been shown to be equivalent
to Kitaev’s honeycomb lattice model that we studied in Chapter 6 [201, 202]. Recently,
topological insulators were discovered, which have similar properties as the integer and
the fractional quantum Hall effect. Interestingly, they do not require the presence of an
external magnetic field to acquire topological properties [203]. These materials are the
focus of a rapidly developing field both theoretically and experimentally [204].

As an alternative to the continuous models one can consider two-dimensional lattice
models. There, one aims to engineer detailed systems with a known anyonic content instead
of searching for them in nature, as we do with the fractional quantum Hall effect. For
example, the quantum double models in Chapter 5 have been proposed to be realised with
Josephson junctions [102]. First experimental results for the toric code already realised
the required four spin interactions [103]. Moreover, the quantum simulation of Abelian
anyonic statistics has been performed by encoding the toric code states in the polarisation
states of four [205] or six photons [206].

In addition, Levin and Wen proposed a family of topological models called the string
net models that include the quantum doubles as special cases [207]. This generalised class
provides a versatile laboratory to theoretically probe anyons. A general drawback of the
string net or quantum double models is that they need interactions between more than two
particles that are hard to engineer in the laboratory. In contrast to this, Kitaev’s honeycomb
lattice model supports non-Abelian anyons and requires only two-spin interactions [71]. A
proposal for its realisation with cold atoms was given by Duan, Demler and Lukin [208].
Moreover, it has been proposed by Micheli, Brennen and Zoller [107] to implement the
honeycomb lattice model with polar molecules [209, 210].

The second question we posed concerns the stability of topological order under environ-
mental perturbations. Topological order is stable at zero temperature, when the system is
subject to local, weak and time independent perturbations [77]. Such perturbations can be
of the form of erroneous interaction terms added to the Hamiltonian of the system [211].
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The stability proof is based on generic properties of topological systems, such as the non-
local character of their quantum correlations. This resilience of topological models was
initially conjectured by Kitaev [16]. It actually motivated him to employ anyons for quan-
tum computation. The stability of topological order can be translated directly to resilience
of topological quantum computation. Indeed, not only the ground state is topologically
protected, but also the anyonic excitations as well as their statistical behaviour. The proven
stability translates to the resilience of topological quantum computation against zero tem-
perature perturbations. Moreover, it has been shown that the toric code is stable against
detectable probabilistic loss of edges, with a tolerated loss rate as high as 50% [212]. A
stability study of the toric code under a quantum quench is given in [213].

But can topological order survive at non-zero temperatures? The effect of finite tem-
peratures on topological systems such as the quantum doubles has been studied with the
help of topological entanglement entropy. It was shown that for fixed temperature the topo-
logical entropy vanishes as the size of the system is increased [182, 179]. Indeed, a finite
temperature induces errors to the system with a finite probability, in the form of unwanted
excitations. In other words, topological systems do not have an intrinsic mechanism which
protects them against probabilistic errors. From the explicit form of the thermal states
given in (3.9) we can deduce that increasing the energy gap of the system decreases the
probability for such errors to occur, but the energy gap cannot eliminate them completely.

From the above discussion it is clear that topological systems by themselves are not able
to protect topologically encoded information from temperature errors. Are there any mod-
ifications we can perform in order to achieve this goal? The aim is to safely store quantum
information in a system, which is subject to finite temperature, for arbitrarily long times and
without performing continuous quantum error correction. Recently, two inspiring schemes
appeared that address this problem within the context of topological systems. Hamma,
Castelnovo and Chamon [79] decorated the toric code with a scalar field that couples to
anyons, thus creating long range attractive interactions between them. When temperature
errors in the form of anyonic excitations occur, then the attractive interaction causes them
to annihilate. Still topological order remains intact as the ground state does not sense the
presence of the scalar field. If such a system could be designed, it would be characterised
by a finite critical temperature below which information could be reliably stored. An alter-
native scheme was presented by Chesi, Röthlisberger and Loss [80]. It employs repulsive
long range interactions between the anyons of the toric code. They showed that such a
quantum memory is protected against temperature fluctuations as it energetically penalises
the generation of anyonic errors in the system. These are just two examples that suggest
how to combat finite temperature errors. It is an exciting possibility to imagine what types
of physical effects one could employ in topological systems in order to improve the perfor-
mance of quantum memories.

Beyond these two questions presented above there is a variety of problems that need to
be addressed [214]. The better we understand the forms quantum matter can take the better
we can encode and manipulate quantum information for technological applications, such
as performing error-free quantum computation. The theoretical and experimental investi-
gation of topological systems moreover provides a platform to study the physics of anyons
in their own right. We can probe and manipulate anyonic quasiparticles and study their
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physics, such as transport phenomena or critical behaviour, without the need to resort to
the microscopic properties of the underlying topological system. This opens a wealth of
possibilities, where anyons can be the ingredients for fundamental research and for tech-
nological applications.
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R matrix, see exchange matrix
k-local operator, 80

adiabatic quantum computation, 49
Aharonov-Bohm effect, 15
Alexander’s theorem, 168
analogue computer, 157, 170
angular momentum, 141
antiparticle, 57, 143
anyon, 5
anyonic

Hilbert space, 58
charge, 57
exchange, 61
fusion, 57
interaction, 119
model, 56

band
conductance, 112
valence, 112

Berry
connection, 19
phase, 18

boson, 6
braid group, 163
braiding matrix, see exchange matrix
braidword, 164

centraliser, 82
Chern number, 36, 115, 150
Chern-Simons theory, 129

Abelian, 130
action, 131
braiding, 133, 136
spin, 133, 137

non-Abelian, 137
action, 138
braiding, 145
fusion, 141, 152

code, 80
[[n, d, k]] code, 80
k-code, 80

computational complexity, 45
BQP, 46, 170
NP, 46
P, 46

conductivity, 30
Hall, 31

longitudinal, 31
transverse, 31

continuum limit, 110, 113
correlation length, 178

density matrix, 40, 178
reduced, 179

dispersion relation, 112

electromagnetism
four dimensions, 130
three dimensions, 131

entanglement, 40, 179
entanglement entropy, 179, 190
error

coherent, 193
correction, 79

classical, 79
quantum, 80

probabilistic, 193, 195
exchange matrix, 61

factoring algorithm, 45
Faraday’s law, 37
Fermi point, 113
fermion, 6
Fibonacci anyons, 73
flux, 15, 17, 33, 37, 93, 132

unit, 33
fusion

matrix, 58
rules, 57

Gauss
integral, 135
law, 144

Gauss-Bonnet formula, 35
geometric phase

anyons, 26
non-Abelian, 21
Abelian, 18

Hadamard test, 171
half filling, 113
Hilbert space, 40
holonomic quantum computation, 51
holonomy, 21, 121
honeycomb lattice model, 102

braiding, 120
fusion, 119
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Hamiltonian, 103
vortex, 109, 111, 117

interference experiment, 194
Ising anyons, 68, 122, 123
isotopy move, 157

Jones polynomial, 157, 162, 171, 173

Kauffman
bracket, see state sum
diagram, 165

knot, 157

Levi-Civita symbol, 131
Lie group, 137
link, 157

equivalence, 157
invariant, 157, 170

Lorentz force, 30

Majorana fermion, 105, 116, 123
braiding, 125
fusion, 124

Markov trace, 167
measurement based quantum computation, see

one-way quantum computation
mixed state, 41

one-way quantum computation, 47
cluster state, 47

order parameter, 177

Pauli
group, 81
matrices, 41

projector, 42
pure state, 40

quantum
algorithm, 44, 45, 157
circuit model, 43
computation, 5
gate, 41

Hadamard, 42
controlled-NOT, 42
controlled-phase, 42

memory, 98, 195
simulation, 157, 170

quantum dimension, 60, 180
total, 180

quantum double models, 79, 83, 91, 186
D(S 3), see quantum double models, non-Abelian
D(Zd), see quantum double models, Abelian
Abelian, 94
ground state, 187
non-Abelian, 96

quantum field theory, 129
Hamiltonian formalism, 143
topological, 129, 157

quantum Hall effect
fractional, 129, 193

integer, 27
Landau level, 28
Laughlin’s thought experiment, 32
magnetic length, 29

quasiparticle, 5, 9
qubit, 39
quotient group, 189

Reidemeister
moves, 158
theorem, 158

representation, 141
fundamental, 140, 143

Schmidt decomposition, 187
searching algorithm, 45
Skein relations, 159, 175
spin-statistics theorem, 4, 65
stabiliser, 81
state sum, 159, 161
statistical

evolution, 7
symmetry, 3, 11

statistics, 3
Abelian, 7
non-Abelian, 8

string net model, 194
SU(2)

level k, 148, 175
level 2, 193

symmetry, 3

Temperley-Lieb algebra, 165
tensor product

of representations, 142
of states, 142

thermal state, 41
topological

entanglement entropy, 177, 181
equivalence, 159
invariance, 182
order, 5, 177, 181, 195
quantum computation, 55, 66

stability, 67
system, 5, 8

continuum, 193
discrete, 193

toric code, 83, 191
braiding, 88
encoding, 89
error correction, 91
fusion, 85
ground state, 84

Turing machine, 38

universality, 44

von Neumann entropy, 178

wave functional, 144
Wilson loop operator, 134, 139, 185



207 Indext
expectation value, 140

winding number, 115, 139, 149
worldline, 56, 134, 157, 158
worldribbon, 64
writhe, 162

Yang-Baxter equations, 165

zero mode, 118


