1. Firstly, if we have the thermal state

$$
\rho=\frac{e^{-H / k T}}{\operatorname{tr}\left(e^{-H / k T}\right)}
$$

then we want to expand $e^{-H / k T}$ into something we can work with. By using the hint given in the book we can deduce that when we have $H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$, the Hamiltonian H can be expanded in terms of its eigenstates to give

$$
H=\sum_{n} E_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|
$$

This means that $e^{-H / k T}$ becomes

$$
e^{-H / k T}=e^{\frac{\sum_{n} E_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|}{k T}}=\sum_{n} e^{-E_{n} / k T}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|
$$

This gives

$$
\rho=\frac{\sum_{n} e^{-\beta E_{n}}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|}{\sum_{n} e^{-\beta E_{n}}}
$$

where we have set $1 / k T=\beta$. The denominator in the above expression is obtained by noting that $\operatorname{tr}\left(e^{-H / k T}\right)$ is equal to a sum over all of the eigenstate's respective probabilities. We know that $E_{n>0}>E_{0}$ and we can set $E_{0}=0$. This allows us to rewrite our expression as

$$
\begin{gathered}
\rho=\frac{e^{-\beta E_{0}}\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|+\sum_{n>0} e^{-\beta E_{n>0}}\left|\Psi_{n>0}\right\rangle\left\langle\Psi_{n>0}\right|}{\sum_{n} e^{-\beta E_{n}}} \\
\therefore \quad \rho=\frac{\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|+\sum_{n>0} e^{-\beta E_{n>0}}\left|\Psi_{n>0}\right\rangle\left\langle\Psi_{n>0}\right|}{\sum_{n} e^{-\beta E_{n}}}
\end{gathered}
$$

because $e^{-\beta E_{0}}=e^{-\beta 0}=1$. Now we want to see what happens to our expression at very low temperatures. To do this we note that

$$
\lim _{T \rightarrow 0} \rho=\lim _{\beta \rightarrow \infty} \rho \quad \because \quad \beta=\frac{1}{k T} .
$$

Therefore we can calculate that

$$
\lim _{\beta \rightarrow \infty} \sum_{n>0} e^{-\beta E_{n>0}}\left|\Psi_{n>0}\right\rangle\left\langle\Psi_{n>0}\right|=0+0+0+\ldots=0
$$

and that

$$
\lim _{\beta \rightarrow \infty} \sum_{n} e^{-\beta E_{n}}=1+0+0+\ldots=1
$$

because $e^{-\beta E_{0}}=1$. Finally we can say that

$$
\begin{gathered}
\lim _{T \rightarrow 0} \rho=\lim _{\beta \rightarrow \infty} \rho=\frac{\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|+0}{1} \\
\therefore \quad \lim _{T \rightarrow 0} \rho=\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|
\end{gathered}
$$

which is the ground state as required.
2. The matrix U takes the form

$$
\left(\begin{array}{ccc}
\sigma^{x} & 0 & \cdots \\
0 & \sigma^{x} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)=\sigma^{x} \otimes \mathbb{1}_{2^{n-1}}
$$

which allows us to operate on N qubits with a single operation. To simulate this using classical single bit gates we would have to operate on each of our N bits independently.
3. The one-dimensional two qubit cluster state is given by

$$
\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{2}}(|+0\rangle+|-1\rangle) .
$$

If we measure the second qubit in the $|0\rangle+e^{i \theta}|1\rangle$ basis rotated by $-\pi / 2$ (the rotated $\mathrm{X}-\mathrm{Y}$ plane) then we find that second qubit becomes

$$
\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \quad \because \quad e^{-i \pi / 2}=-i
$$

as required.
4. We want to transform the state $|\psi\rangle=|00\rangle$ into the maximally entangled state given by

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),
$$

when we are in the basis $\{|0\rangle,|1\rangle\}$. Firstly we want to use the Hadamard gate. However, we need a four dimensional Hadamard matrix in order to operate on a two qubit system. We achieve this by taking the tensor product of the two dimensional Hadamard gate with the two dimensional identity matrix

$$
\begin{gathered}
\left(H \otimes \mathbb{1}_{2}\right)|00\rangle=\left(H \otimes \mathbb{1}_{2}\right)(|0\rangle \otimes|0\rangle) \\
=H|0\rangle+\mathbb{1}_{2}|0\rangle \\
=(|0\rangle+|1\rangle) \otimes|0\rangle \\
=\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle),
\end{gathered}
$$

if we assume our state is normalized. We now want to apply a controlled gate that will flip a target qubit iff our control qubit is in the state $|1\rangle$. We want this gate to flip the target qubit so we want to use the controlled-NOT gate which will act as follows

$$
\begin{gathered}
(C N O T)\left[\left(H \otimes \mathbb{1}_{2}\right)(|0\rangle \otimes|0\rangle)\right]=(C N O T)(|00\rangle+|10\rangle) \\
=|00\rangle+|11\rangle \\
=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),
\end{gathered}
$$

if we assume the normalization condition again. So to transform our state $|00\rangle \mapsto \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, first we apply the Hadamard gates product with the two dimensional identity and then the CNOT gate.

