Introduction to Topological Quantum Computation Chapter 3 Solutions

1. Firstly, if we have the thermal state
e—H/KT
p= tr(e—H/RT)
then we want to expand e~ #/FT into something we can work with. By using the hint given in the
book we can deduce that when we have H |¥,,) = E,, |¥,,), the Hamiltonian H can be expanded in
terms of its eigenstates to give

H=> E,[U,) (T,

This means that e #/*T becomes
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where we have set 1/kT = . The denominator in the above expression is obtained by noting that

tr(e_H/ k1) is equal to a sum over all of the eigenstate’s respective probabilities. We know that
FE,~0 > Ey and we can set Eg = 0. This allows us to rewrite our expression as
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because e #Fo = ¢80 = 1. Now we want to see what happens to our expression at very low
temperatures. To do this we note that

lim p = li v B= =
PP = P

Therefore we can calculate that
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and that
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because e #Fo = 1. Finally we can say that
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which is the ground state as required.

2. The matrix U takes the form

x - T
O g :O"L®12n—1,

which allows us to operate on N qubits with a single operation. To simulate this using classical
single bit gates we would have to operate on each of our N bits independently.
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3. The one-dimensional two qubit cluster state is given by
1
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If we measure the second qubit in the |0) + ¢% |1) basis rotated by —m/2 (the rotated X-Y plane)
then we find that second qubit becomes

[e) = —=(I4+0) +[-1)).
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as required.

4. We want to transform the state |¢)) = |00) into the maximally entangled state given by
1
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when we are in the basis {|0), |1)}. Firstly we want to use the Hadamard gate. However, we need a
four dimensional Hadamard matrix in order to operate on a two qubit system. We achieve this by
taking the tensor product of the two dimensional Hadamard gate with the two dimensional identity
matrix

|¥) (100) + [11)),

(H ©15)[00) = (H © 12)(|0) @ |0))
= H [0) + 12 0)
= (10) + 1)) ©10)
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if we assume our state is normalized. We now want to apply a controlled gate that will flip a target
qubit iff our control qubit is in the state |1). We want this gate to flip the target qubit so we want
to use the controlled-NOT gate which will act as follows

(100) + [10)),

(CNOT)[(H ©12)(|0) ® |0))] = (CNOT)(|00) + |10))
= |00) + [11)

1
= ﬁ(l00> +[11)),

if we assume the normalization condition again. So to transform our state [00) — %(\OO) +11)),
first we apply the Hadamard gates product with the two dimensional identity and then the CNOT
gate.



