
Introduction to Topological Quantum Computation Chapter 2 Soltuions

1. Unfortunately, the Hamiltonian given in the book is for this question is incorrect. The correct one is
given by

H =

∆1 Ω1 Ω2

Ω∗
1 ∆2 Ω3

Ω∗
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3 ∆3

 =

=

 sin2(θ1)cos2(θ2) ei(φ1−φ2)sin(θ1)sin(θ2)cos(θ2) eiφ1sin(θ1)cos(θ1)cos2(θ2)
ei(φ2−φ1)sin(θ1)sin(θ2)cos(θ2) sin2(θ2) eiφ2sin(θ2)cos(θ2)cos(θ1)
e−iφ1sin(θ1)cos(θ1)cos2(θ2) e−iφ2sin(θ2)cos(θ2)cos(θ1) cos2(θ1)cos2(θ2)


For further information on where the above matrix comes from and the physics involved in the question
we point the reader to the additional questions offered on the books website and to sections 3 and 4
of the research paper that inspired the question: Quantum Computation by Geometrical Means by
Jiannis Pachos, available at https://arxiv.org/abs/quant-ph/0003150.

2. The Lorentz force is given by FL = q~v × ~B. By applying this force to an electron in motion across
the plane, it is seen from the cross product that the Lorentz force acts perpendicular to the electron’s
direction of motion at all points in time. It is clear to see that this will result in the electron being
moved on a circular path. By considering the centripetal force experienced by the electron in moving

on a circular path, Fc = mev
2

r with r as the radius of the circular path traversed, the frequency of the
circling electron can be deduced by equating this with the Lorentz force, as below. As the magnetic
field B is orthogonal to the direction of motion of the electron, ~v × ~B = |~v|| ~B| = vB. So

mev
2

r
= evB.

Which can be rearranged to give
v

r
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From this we can see that v = rω. The quantum description of Landau Levels in the book gives

Ψ(x, y, z) = ΨSHO
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with energy eigenvalues given by
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If we consider the energies of classical and quantum descriptions respectively they are given by
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where we have set kz = 0 because we are considering the case where we are confined to two-dimensional
circular motion. If we set Eclass = Equan and rearrange we get
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1

2~
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which demonstrates what Landau level our system would need to be in before it came into agreement
with classical predictions. We can see from this expression that for a radius of a classical scale (say if
we set r equal to one metre), we would be in an extremely high eigenstate of the quantum description.

3. It is seen in Figure (2.11) that the electric field is orthogonal to the normal of the surface of the ribbon
at all points. The dot product therefore reduces to give:∮

E · dr =

∮
|E|dr = −1
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This has therefore become a surface integral over the curved surface of the ribbon, which can be easily
identified as ∮

Edr = 2πrTE = −1

c
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where T is the width of the ribbon. Therefore

E = − 1

2πrTc

∂Φ
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Substituting from above:

j(t) =
−σxy
2πrTc

∂Φ

∂t

Therefore it is seen that:

J(t) =

∮
−σxy
2πrTc

∂Φ

∂t
dr

This is the same surface integral as above, which is evaluated to give∮
dr = 2πrT

Upon substitution this gives

J(t) =
σxy
c

∂Φ

∂t

As required. Finally, we want to find the total charge Q, when the flux is increased by ∆Φ = Φ0 = hc
e .

To do this, we take our expression for total current and rearrange it to give

J(t)c
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=
∂Φ
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We the integrate both sides with respect to t to give
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∫
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We can now evaluate this integral between Φ and Φ + ∆Φ to obtain our expression for ∆Φ

c

σxy
Q =
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dΦ = Φ + ∆Φ− Φ = ∆Φ

Using the fact that ∆Φ = hc
e we now have
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as required.
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