
Introduction to Topological Quantum Computation Chapter 4 Solutions

1. (a) N c
1a = δac

This property is the trivial statement that particles do not undergo fusion with the vaccum.
This is the fundamental property of the vacuum. The δ function states that the only outcome of
fusing the particle with the vacuum is to obtain the particle itself, which is the same as having
no fusion take place.

(b) N1
ab = δbā

This property states that two particles fuse to the produce vacuum (annihilate), only if they
are antiparticles. If particle b annihilates to the vacuum with particle a. Then by definition, this
particle is the antiparticle of a, so it can be referred to as b=ā. A particle/antiparticle pair, have
the vacuum as their unique fusion channel, thus giving rise to the δ relation.

(c) N c
ab = N c

ba = N ā
bc̄ = N c̄

āb̄
b

i. N c
ab = N c

ba

The first equality here follows directly from the commutativity property of the fusion rules,
specifically that a×b = b×a. Therefore by changing the order of fusion between two particles,
the fusion channel should remain identical.

ii. N c
ab = N ā

bc̄

(a× b)× (c̄× ā) =

(∑
j

N j
abj

)
× (c̄× ā) =

∑
j

N j
ab(j × c̄× ā)

= N c
ab(c× c̄)× ā+

∑
j 6=c

N j
ab(j × c̄× ā)

= N c
abā+

∑
j 6=c

N j
ab(j × c̄× ā)

(a× b)× (c̄× ā) = (a× ā)× (b× c̄)

= (1)×
(∑

k

Nk
bc̄k

)
= N ā

bc̄ā+
∑
k 6=ā

Nk
bc̄k

= N c
abā+

∑
j 6=c

N j
ba(j × c̄× ā)

We would like here to equate the coefficients of the leading ā terms, however we must first
eliminate the possibility of the final fusion term resulting in a ā anyon.

∑
j 6=cN

j
ab(j × c̄× ā).

By the associativity of the fusion rules, j × c̄ × ā = (j × c̄) × ā. Due to the fact that
anyons do not fuse with the vacuum and change to a different anyon, we have Nk

mk = δm1.
Thus for (j× c)× ā to result in a ā anyon, it must be that j× c̄ = 1. As an anyon/anti-anyon
pair have a unique fusion channel with the vacuum we have N1

mk = δmk̄. Therefore in order
for j × c̄ = 1, it must be that j = c. This is seen to be the original term isolated from the
summation, therefore for j 6= c, we can not have j × c̄× ā resulting in a ā anyon.

Finally by equating the coefficients of ā it is seen that N c
ab = N ā

bc̄. As required.

iii. N c
ab = N ā

b̄c̄
.

In order to demonstrate this equality we must show that some intermediate results hold.
The process will be as follows:

N c
ab = N b̄

ac̄ = N1
abc̄ = N b̄c

a = N āb̄
c̄ = N c̄

āb̄
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Firstly we have
N c
ab = N b̄

ac̄

from the earlier equality.

The second equality defines what it means to have three anyons undergoing fusion. To show
this equality consider:

a× b× c =
∑
i

∑
j

N i
abN

j
icj = NA

abc

Where A is the outcome of fusing all three anyons. In this case we are interested in A = 1,
the vacuum. We split the above summation to the case j = 1 and j 6= 1. In the former case,
we are forced to take i = c, due to the delta relation:

N1
ab = δbā

wihch dictates that the only way to have the vacuum as outcome from a fusion is to fuse two
antiparticles. We then have:

N c
ab +

∑
i 6=c

∑
j 6=1

N i
abN

j
ic

The first term here was obtained when we consdiered fusing thee anyons a, b, c to give the
vacuum, therefore it can be expressed as N1

abc̄, and we have N c
ab = N1

abc̄.
Next, we consider the composite anyon b× c̄. We are able to manipulate this without evalu-
ating the exact outcome of the fusion. We have that

b× c× b̄× c̄ = b× b̄× c× c̄ = (b× b̄)× (c× c̄) = 1

by the commutitivity and associativity properties of fusion. Therefore we know the antipar-
ticle of the b× c̄ anyon is simply b̄× c.
Therefore by the earlier property (ii), we are able to raise the index: bc̄, by taking its antipar-
ticle and lowering the 1 anyon (the vacuum) which is its own antiparticle. This gives

N1
abc̄ = N b̄c

a .

By applying this property again, to the a, c anyons, we obtain

N b̄c
a = N b̄ā

c̄

The final step is to recall that the fusion process is time invertible as a×b = c can equivalently
be seen as the particle c splitting to give a, b. Therefore we have that:

N b̄c̄
ā = N ā

b̄c̄

by time inverting the process. And consequently by considering the string of equalities demon-
strated:

N c
ab = N b̄

ac̄ = N1
abc̄ = N b̄c

a = N āb̄
c̄ = N c̄

āb̄

we have that:
N c
ab = N ā

b̄c̄.

(d)

(a× b)× c =

(∑
d

Ne
abe

)
× c =

∑
d

(∑
e

Ne
abN

d
ec

)
d

a× (b× c) = a×
∑
f

Nf
bcf =

∑
d

Nf
bc(a× f)

=
∑
d

(∑
f

Nf
bcN

d
af

)
d =

∑
d

(∑
f

Nd
afN

f
bc

)
d
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These fusion rules are associative, meaning (a × b) × c = a × (b × c), by equating the bracketed

coefficients of d in each case it is seen that
∑
eN

e
abN

d
ec =

∑
f N

f
bcN

d
af as required.

2. Consider the fusion of n anyons.

The Hilbert space defining the fusion process will therefore be:

Hena1,a2,...,an−1
=

⊕
e1,e2,...,en

He1a1a2 ⊗H
e2
e1a3 ⊗H

e3
e2a4 ⊗ · · · ⊗ H

an
an−1en−3

This new Hilbert space will have dimension equal to:

dim(Mn) =
∑
ei

Ne1
a1a2N

e2
e1a3N

e3
e2a4 . . . N

an
an−1en−3

If we consider the matrix Nc with entries (Nc)ab = N c
ab, we see that:

dim(Mn) =
∑
ei

Ne1
a1a2N

e2
e1a3N

e3
e2a4 . . . N

an
an−1en−3

=
(
Na2Na3 . . . Nan

)bn
a1

We then have
dim(Ha1,a2,...,an−1

) =
(
Na2Na3 . . . Nan

)en
a1

=
[
N (n−1)
a

]en
a
≈ dna

3. It is possible to create an entangled state, however it is not possible through topologically protected
operations alone. More information can be found here:

Brennen, G. K., Iblisdir, S., Pachos, J. K. and Slingerland, J. K. 2009. New J. Phys. 11, 103023

4. Pentagon Equation

F matrix for the Fibonacci model:

F ττττ =

(
1
φ

1√
φ

1√
φ
− 1
φ

)
(1)

Pentagon Equation:

(F 5
12c)

d
a(F 5

a34)cb =
∑
e

(F d234)ce(F
5
1e4)db(F

b
123)ea (2)

The only non-trivial pentagon arises when 1 = 2 = 3 = 4 = 5 = τ [1]. The pentagon equation (2)
therefore becomes:

(F τττc)
d
a(F τaττ )cb =

∑
e

(F dτττ )ce(F
τ
τeτ )db(F

b
τττ )ea

3
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Let a = 1.
(F τττc)

d
1(F τ1ττ )cb = (F dτττ )c1(F ττ1τ )db(F

b
τττ )1

1 + (F dτττ )cτ (F ττττ )db(F
b
τττ )τ1

Let b = 1.

(F τττc)
d
1(F τ1ττ )c1 = (F dτττ )c1(F ττ1τ )d1(F 1

τττ )1
1 + (F dτττ )cτ (F ττττ )d1(F 1

τττ )τ1

Here we can identify that (F τ1ττ )c1 = (F 1
τττ )τ1 = (F ττ1τ )d1 = 0 as they each correspond to an impossible

fusion process. The pentagon equation therefore reduces to 0 = 0 and we move on.

Let a = 1, b = τ .

(F τττc)
d
1(F τ1ττ )cτ = (F dτττ )c1(F ττ1τ )dτ (F ττττ )1

1 + (F dτττ )cτ (F ττττ )dτ (F ττττ )τ1

Let a = 1, b = τ, c = 1

(F τττ1)d1(F τ1ττ )1
τ = (F dτττ )1

1(F ττ1τ )dτ (F ττττ )1
1 + (F dτττ )1

τ (F ττττ )dτ (F ττττ )τ1

Here (F τττ1)d1 = (F τ1ττ )1
τ = 0 as they each corresponds to an impossible fusion process. So we have:

0 = (F dτττ )1
1(F ττ1τ )dτ (F ττττ )1

1 + (F dτττ )1
τ (F ττττ )dτ (F ττττ )τ1

Which means:
(F dτττ )1

1(F ττ1τ )dτ (F ττττ )1
1 = −(F dτττ )1

τ (F ττττ )dτ (F ττττ )τ1

Let a = 1, b = τ, c = 1, d = 1.

(F 1
τττ )1

1(F ττ1τ )1
τ (F ττττ )1

1 = −(F 1
τττ )1

τ (F ττττ )1
τ (F ττττ )τ1

Here we have (F ττ1τ )1
τ = (F 1

τττ )1
τ = 0 as they correspond to impossible fusion processes. The pentagon

equation therefore reduces to 0 = 0 and we move on.

Let a = 1, b = τ, c = 1, d = τ .

(F ττττ )1
1(F ττ1τ )ττ (F ττττ )1

1 = −(F ττττ )1
τ (F ττττ )ττ (F ττττ )τ1

We can see here that (F ττ1τ )ττ = 1 by the fusion diagrams. Upon substitution we arrive at an equation
relating elements of the F ττττ matrix:

(F ττττ )1
1(F ττττ )1

1 = −(F ττττ )1
τ (F ττττ )ττ (F ττττ )τ1 (3)

Letting a = τ , the pentagon equation (2) becomes:

(F τττc)
d
τ (F ττττ )cb = (F dτττ )c1(F ττ1τ )db(F

b
τττ )1

τ + (F dτττ )cτ (F ττττ )db(F
b
τττ )ττ

Let a = τ, b = 1

(F τττc)
d
τ (F ττττ )c1 = (F dτττ )c1(F ττ1τ )d1(F 1

τττ )1
τ + (F dτττ )cτ (F ττττ )d1(F 1

τττ )ττ

We have (F ττ1τ )d1 = 0 as it corresponds to an impossible fusion process, also (F 1
τττ )ττ = 1 by the fusion

diagram. Therefore:

(F τττc)
d
τ (F ττττ )c1 = (F dτττ )cτ (F ττττ )d1

4
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Let a = τ, b = 1, c = 1

(F τττ1)dτ (F ττττ )1
1 = (F dτττ )1

τ (F ττττ )d1

Let a = τ, b = 1, c = 1, d = 1

(F τττ1)1
τ (F ττττ )1

1 = (F 1
τττ )1

τ (F ττττ )1
1

Here we see that (F τττ1)1
τ = (F 1

τττ )1
τ = 0 as they correspond to impossible fusion processes. Thus the

pentagon equation reduces to 0=0 and we move on.

Let a = τ, b = 1, c = 1, d = τ

(F τττ1)ττ (F ττττ )1
1 = (F ττττ )1

τ (F ττττ )τ1

We can identify here that (F τττ1)ττ = 1 by the fusion diagrams, therefore we obtain another equation
relating elements of the F ττττ matrix.

(F ττττ )1
1 = (F ττττ )1

τ (F ττττ )τ1 (4)

Consider a = τ, b = 1, c = τ
(F ττττ )dτ (F ττττ )τ1 = (F dτττ )ττ (F ττττ )d1

Let d = 1

(F ττττ )1
τ (F ττττ )τ1 = (F 1

τττ )ττ (F ττττ )1
1

Identifying (F 1
τττ )ττ = 1 we see that we have reached the same equation as above (4).

Let d = τ

(F ττττ )ττ (F ττττ )τ1 = (F ττττ )ττ (F ττττ )τ1

This is a trivial equality and of no further use.

Let a = τ, b = τ, c = 1

(F τττ1)dτ (F ττττ )1
τ = (F dτττ )1

1(F ττ1τ )dτ (F ττττ )1
τ + (F dτττ )1

τ (F ττττ )dτ (F ττττ )ττ

Let d = 1

(F τττ1)1
τ (F ττττ )1

τ = (F 1
τττ )1

1(F ττ1τ )1
τ (F ττττ )1

τ + (F 1
τττ )1

τ (F ττττ )1
τ (F ττττ )ττ

We can see here that (F τττ1)1
τ = (F ττ1τ )1

τ = (F 1
τττ )1

τ = 0 as they each correspond to an impossible fusion
process. The pentagon equation therefore reduces to 0=0 and we move on.
Let d = τ

(F τττ1)ττ (F ττττ )1
τ = (F ττττ )1

1(F ττ1τ )ττ (F ττττ )1
τ + (F ττττ )1

τ (F ττττ )ττ (F ττττ )ττ
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Here we have (F τττ1)ττ = (F ττ1τ )ττ = 1 by the fusion diagrams. Upon substitution we arrive at a third
equation relating elements of the F ττττ ) matrix:

(F ττττ )1
τ = (F ττττ )1

1(F ττττ )1
τ + (F ττττ )1

τ (F ττττ )ττ (F ττττ )ττ (5)

Let a = b = c = τ, d = 1

(F ττττ )1
τ (F ττττ )ττ = (F ττττ )τ1(F ττ1τ )1

τ (F ττττ )1
τ + (F 1

τττ )ττ (F ττττ )1
τ (F ττττ )ττ

Here (F 1
τ1τ )1

τ = 0 and (F 1
τττ )ττ = 1, giving:

(F ττττ )1
τ (F ττττ )ττ = (F ττττ )1

τ (F ττττ )ττ

which is trivial and of no further use.

The final case: a = b = c = d = τ :

(F ττττ )ττ (F ττττ )ττ = (F ττττ )τ1(F ττ1τ )ττ (F ττττ )1
τ + (F ττττ )ττ (F ττττ )ττ (F ττττ )ττ

Here (F ττ1τ )ττ = 1 by the fusion rules, giving one final equation relating the elements of the F ττττ matrix:

(F ττττ )ττ (F ττττ )ττ = (F ττττ )τ1(F ττττ )1
τ + (F ττττ )ττ (F ττττ )ττ (F ττττ )ττ (6)

Let us now consider the given F ττττ matrix for the Fibonacci model (1).

Subsituting this into the first equation we derived (3), we see that:

1

φ
· 1

φ
= −

(
1√
φ
· −1

φ
· 1√

φ

)

It is seen that this equation is satisfied for all φ.

Substituting (1) into the second equation we derived (4) gives:

1

φ
=

1√
φ
· 1√

φ

This equation is satisfied for all φ.

Substituting (1) into the third equation we derived (5) gives:

1√
φ

=

(
1

φ
· 1√

φ

)
+

(
1√
φ
· −1

φ
· −1

φ

)
This is satisfied for φ = 1+

√
5

2 : the golden ratio.

Substituting (1) into the final equation we derived (6) gives:

1

φ2
=

1

φ
+

(
−1

φ
· −1

φ
· −1

φ

)

This is satisfied for φ = 1+
√

5
2 : the golden ratio.

Thus the given F matrix for the Fibonacci model satisfies the Pentagon equation.

6
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Hexagon Equation

R matrix for the Fibonacci model:

Rττ =

(
e4πi/5 0

0 −e2πi/5

)
(7)

Hexagon Equation: ∑
b

(F 4
231)cbR

4
1b(F

4
123)ba = Rc13(F 4

213)c1R
a
12 (8)

As in the pentagon equation, set 1 = 2 = 3 = 4 = 5 = τ . The hexagon equation (8) becomes:

(F ττττ )cτR
τ
ττ (F ττττ )τa + (F ττττ )c1R

τ
τ1(F ττττ )1

a = Rcττ (F ττττ )caR
a
ττ (9)

There are four separate cases for all pairs (a, c) ∈ {1, τ}2 which must be considered.

(a) a = c = 1

(F ττττ )1
τR

τ
ττ (F ττττ )τ1 + (F ττττ )1

1R
τ
τ1(F ττττ )1

1 = R1
ττ (F ττττ )1

1R
1
ττ

It is possible to identify that Rττ1 = 1.

Substituting from the F ττττ matrix we obtain an equation relating the components of the Rττ
matrix.

1

φ2
+

1

φ
Rτττ =

1

φ
R1
ττ ·R1

ττ (10)

(b) a = τ, c = 1

(F ττττ )1
τR

τ
ττ (F ττττ )ττ + (F ττττ )1

1R
τ
τ1(F ττττ )1

τ = R1
ττ (F ττττ )1

τR
τ
ττ

It is possible to identify that Rττ1 = 1.

Substituting from the F ττττ matrix we obtain a second equation relating the components of the
Rττ matrix.

1

φ
√
φ
− 1

φ
√
φ
Rτττ =

1√
φ
R1
ττR

τ
ττ (11)

(c) a = 1, c = τ

(F ττττ )ττR
τ
ττ (F ττττ )τ1 + (F ττττ )τ1R

τ
τ1(F ττττ )1

1 = Rτττ (F ττττ )τ1R
1
ττ

It is possible to identify that Rττ1 = 1.

Substituting from the F ττττ matrix we obtain a third equation relating the components of the Rττ
matrix.

1

φ
√
φ
− 1

φ
√
φ
Rτττ =

1√
φ
R1
ττR

τ
ττ (12)

This is equal to the second equation obtained (11).

7



Introduction to Topological Quantum Computation Chapter 4 Solutions

(d) a = τ, c = τ

(F ττττ )ττR
τ
ττ (F ττττ )ττ + (F ττττ )τ1R

τ
τ1(F ττττ )1

τ = Rτττ (F ττττ )ττR
τ
ττ

It is possible to identify that Rττ1 = 1.

Substituting from the F ττττ matrix we obtain a fourth and final equation relating the components
of the Rττ matrix.

1

φ
+

1

φ2
Rτττ = − 1

φ
RτττR

τ
ττ (13)

We are now in a position to verify that equations (10),(11),(12),(13) hold for the given values of R1
ττ

and Rτττ .

Verification

Equation (10)

1

φ2
+

1

φ
Rτττ =

1

φ
R1
ττ ·R1

ττ

Substituting from the R matrix (7). We see that:

1

φ2
− 1

φ
e2πi/5 =

1

φ
(e4πi/5)2

=⇒ 1

φ
− e2πi/5 = (e4πi/5)2

=⇒ 1

φ
= e2πi/5 + e8πi/5

Convert to polar form and simplify:

e2πi/5 + e8πi/5 = cos

(
2π

5

)
+ i sin

(
2π

5

)
+ cos

(
8π

5

)
+ i sin

(
8π

5

)

=
(1−

√
5)

4
+ i

√
5

8
+

√
5

8
+

(1−
√

5)

4
− i

√
5

8
+

√
5

8

=
(1−

√
5)

2
=

2

1 +
√

5
=

1

φ
.

Equation (10) therefore holds for the given R matrix.

Equations (11), (12)

1

φ
√
φ
− 1

φ
√
φ
Rτττ =

1√
φ
R1
ττR

τ
ττ

1

φ
− −e

2πi/5

φ
= −e4πi/5e2πi/5 = −e6πi/5

=⇒ 1− e2πi/5 = −φ · e6πi/5

=⇒ φ = −e−6πi/5 − e−4πi/5

8
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Convert to polar form and simplify:

φ = −e−6πi/5 − e−4πi/5

= −
(

cos

(
−6π

5

)
+ i sin

(
−6π

5

)
+ cos

(
−4π

5

)
+ i sin

(
−4π

5

))

= − (−1−
√

5)

4
− (−1−

√
5)

4
+ i

√
5

8
−
√

5

8
− i

√
5

8
−
√

5

8

= − (−1−
√

5)

2
=

1 +
√

5

2
.

Equations (11) and (12) therefore hold for the given R matrix.

Equation (13)

1

φ
+

1

φ2
Rτττ = − 1

φ
RτττR

τ
ττ

1− −e
2πi/5

φ
= −e4πi/5 =⇒ 1

φ
=

1 + e4πi/5

e2πi/5
= e−2πi/5 + e2πi/5

Convert to polar form and simplify:

1

φ
= e−2πi/5 + e2πi/5

= cos

(
−2π

5

)
+ i sin

(
−2π

5

)
+ cos

(
2π

5

)
+ i sin

(
2π

5

)

=
(
√

5− 1)

4
− i

√
5

8
+

√
5

8
+

(
√

5− 1)

4
+ i

√
5

8
+

√
5

8

=
(
√

5− 1)

2
=

2

1 +
√

5
=

1

φ

Equation (13) therefore holds for the given R matrix.

Equations (10) - (13) are each satisfied by the given R matrix for the Fibonacci anyon model. We can
therefore conclude that the F and R matrices for the Fibonacci anyon model are consistent with the
Pentagon and Hexagon equations.

σ × ψ = σ

ψ × ψ = 1

σ × σ = 1 + ψ

References

[1] Trebst et al. (2008). A Short Introduction to Fibonacci Anyon Models. Progress of Theoretical
Physics Supplement . 176

9


