Introduction to Topological Quantum Computation Chapter 4 Solutions

1.

(a) Nf, = dac

(c)

This property is the trivial statement that particles do not undergo fusion with the vaccum.
This is the fundamental property of the vacuum. The ¢ function states that the only outcome of
fusing the particle with the vacuum is to obtain the particle itself, which is the same as having
no fusion take place.

N;b = Oba

This property states that two particles fuse to the produce vacuum (annihilate), only if they
are antiparticles. If particle b annihilates to the vacuum with particle a. Then by definition, this
particle is the antiparticle of a, so it can be referred to as b=a. A particle/antiparticle pair, have
the vacuum as their unique fusion channel, thus giving rise to the § relation.

NC

a

i.

ii.

iii.

b:Nbca:Nbc NC

abb

N, gb =N bca
The first equality here follows directly from the commutativity property of the fusion rules,
specifically that a xb = bx a. Therefore by changing the order of fusion between two particles,
the fusion channel should remain identical.

Ngy = Nie
(a xb) x (¢xa) ( ) (Exd):ZNgb(jxéxd)

= N¢ (cxc xa—&—ZN;bjxcxa)
J#c
= Noa+ ) Ni,(jxexa)
i

(axb)yx(e¢xa)=(axa)x(bxec)
NEE
(3o

= Nja+ Y Nik
k+a
= Nga+ Y Nj,(jxexa)
J#c
We would like here to equate the coefficients of the leading a terms, however we must first
eliminate the possibility of the final fusion term resulting in a @ anyon. Zj 2V, 2(J xexa).

By the associativity of the fusion rules, j x € x @ = (j x €) x a. Due to the fact that
anyons do not fuse with the vacuum and change to a different anyon, we have Nj%k = Om1-
Thus for (j x ¢) X @ to result in a @ anyon, it must be that j X ¢ = 1. As an anyon/anti-anyon
pair have a unique fusion channel with the vacuum we have N} k = §,,z. Therefore in order
for j x ¢ = 1, it must be that j = ¢. This is seen to be the original term isolated from the

summation, therefore for j # ¢, we can not have j x ¢ x a resulting in a @ anyon.

Finally by equating the coefficients of a it is seen that NS = NZ. As required.

NG, = NZ.

In order to demonstrate this equality we must show that some intermediate results hold.
The process will be as follows:

b 1 _ arbe _ prab _ pjé
ab_N Nabé_Na _NE _NaB
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Firstly we have
b
ab - N

from the earlier equality.

The second equality defines what it means to have three anyons undergoing fusion. To show
this equality consider:

— A
axbxc= ZZ N}, Npe

Where A is the outcome of fusing all three anyons. In this case we are interested in A = 1,
the vacuum. We split the above summation to the case j = 1 and j # 1. In the former case,
we are forced to take i = ¢, due to the delta relation:

Ngy, = 0ba
wihch dictates that the only way to have the vacuum as outcome from a fusion is to fuse two
antiparticles. We then have:
mt 2D N,

i#c j#1
The first term here was obtained when we consdiered fusing thee anyons a,b, c to give the

vacuum, therefore it can be expressed as N apz> and we have NS, = N, ;ba'

Next, we consider the composite anyon b x ¢. We are able to manipulate this without evalu-
ating the exact outcome of the fusion. We have that

bxexbxe=bxbxcxe=(bxb) x(cxe) =1

by the commutitivity and associativity properties of fusion. Therefore we know the antipar-
ticle of the b x ¢ anyon is simply b x c.

Therefore by the earlier property (ii), we are able to raise the index: b¢, by taking its antipar-
ticle and lowering the 1 anyon (the vacuum) which is its own antiparticle. This gives

1 b
Nabé = Nac'
By applying this property again, to the a, c anyons, we obtain
Ngc — Nga

The final step is to recall that the fusion process is time invertible as a X b = ¢ can equivalently
be seen as the particle ¢ splitting to give a, b. Therefore we have that:

e ara
N = N,
by time inverting the process. And consequently by considering the string of equalities demon-

strated: ~ ~ B
: b 1 b ab c
gb:NaE:NabE:NaC:Ng :N(ig

we have that: .
gb = NBGE'

(a x b) x <ZN )xc:zd:<ze:N;bNgc)d

x(bxc):axZszcf:ZN,fc(axf)
f d

p(pneg(p)
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These fusion rules are associative, meaning (a X b) X ¢ = a X (b X ¢), by equating the bracketed
coefficients of d in each case it is seen that . NG N& = f Nbchgf as required.

2. Consider the fusion of n anyons.

(b) da a a a a
2 3 4 n-2 n-1

a, a
€ €, €, 3

The Hilbert space defining the fusion process will therefore be:

en _ el €2 €3 - an
Halaa2a-~7an—1 - @ HGHLQ ® HEl”«S ® H€2a4 ® ®H

an—1€n—3

This new Hilbert space will have dimension equal to:

ajaz” "€e1a3” €204 An—1€n—3

dim(My) = > N&,, N2, N, . N
€q

If we consider the matrix N, with entries (N¢)q, = NS, we see that:

dim(M,) = Y N&, Ne2, N, .. No» — (NuyNoy .- N, )

aiaz2” "€e1a3” €204 an—1€n—3 ai
€3

We then have
dim(Hal,ag,...,an,l) = (NazNag .. .Nan)en — I:thn—l):len ~ dZ

ay a

3. It is possible to create an entangled state, however it is not possible through topologically protected
operations alone. More information can be found here:

Brennen, G. K., Iblisdir, S., Pachos, J. K. and Slingerland, J. K. 2009. New J. Phys. 11, 103023

4. Pentagon Equation

F matrix for the Fibonacci model:
F;—TT = <

(F1520)2(Fa534)g = Z(F§34)2(F15€4)5(F1b23)2 (2)

e

-5
@\»—é’i
SN—

—

—
~—

-

Pentagon Equation:

The only non-trivial pentagon arises when 1 = 2 = 3 =4 =5 = 7 [1]. The pentagon equation (2)

therefore becomes:
(F:TC)Z(F;—TT)(Z; = Z(FgTT)g(F‘ITeT)g(FfTT)Z

e
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Let a = 1.
(FL){(F )5 = (B 5 (FT

TTC TTT TlT) (Fb )1 + (Fd )T(FT ) (Fb )T

TTT TTT TTT TTT

Let b=1.

(FL )8 (FT )8 = (FE )5 (FL) (LY + (FL )8 (L HEL )T

Here we can identify that (FY,.)¢ = (FL )] = (F7,,)¢ = 0 as they each correspond to an impossible

fusion process. The pentagon equation therefore reduces to 0 = 0 and we move on.
Let a=1,b=r.

(FLOT (P = (L) (FL )T )1 + (B ) (BT )1 (FL )
Leta=1,b=71,c=1

(FT ) HFT )L = (P2 )L ED A F ) + (B (P )AFT, )T

Here (F.

)¢ = (F7,..)L = 0 as they each corresponds to an impossible fusion process. So we have:

0= (FL 1 (FL)T(FL1 + (Bl ) (BT ) f(FL )T

TTT TTT TTT TTT TTT

‘Which means:
(BN (FL )N FL ) = = (P ) (FL ) H(FT )T

TTT TTT TTT TTT TTT

Leta=1,b=71,c=1,d=1.

(F‘}TT) (F;—IT)T(F:TT)

—(Frrp)r (FLop) 7 (L)

TTT TTT TTT

Here we have (F7;. )1 = (FL )L =0 as they correspond to impossible fusion processes. The pentagon
equation therefore reduces to 0 = 0 and we move on.

Leta=1,b=1,c=1,d=r1.

(FLN(FL )T (FL ) = —(FL ) (FL )T (FL)T

TTT TTT TTT TTT TTT

We can see here that (F7;.)T =1 by the fusion diagrams. Upon substitution we arrive at an equation

relating elements of the F__ matrix:

(FLn (Pl )y = —(FL ) (FL )T (FL )T (3)

TTT TTT TTT TTT TTT

Letting a = 7, the pentagon equation (2) becomes:

(F:TC)T(F:TT)C (F‘IflTT) (F:'-l‘r

o (Ff )z + (P ) (BT )5 (Fr )]

Leta=71,b=1
(F‘IT’TC)T(F;-’TT) = (F‘I(:i’TT)i( ’T'lT) (F‘I}’TT)T (F‘I‘ElTT)T(F;—TT) (F’T%TT):

We have (F7;.
diagram. Therefore:

)4 = 0 as it corresponds to an impossible fusion process, also (F, )T =1 by the fusion

(Frr)d(FL)f = (B )2 (P )

TTC TTT TTT TTT
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Leta=71,b=1,c=1

(F:Tl)g(F‘ITTT)} = (F‘l('iTT)‘]I-'(F‘;—TT)(li
Leta=7,b=1,c=1,d=1
(F:Tl)‘}'(F;—TT)% = (F:TT)i(F‘ITTT)%

Here we see that (F7 ;)L = (FL )L =0 as they correspond to impossible fusion processes. Thus the

TTT

pentagon equation reduces to 0=0 and we move on.

Leta=71,b=1,c=1,d=r1

(F7.

T 1 T 1 T
TTl):(FTTT)l = (FTTT)T(F‘ITTT)].
We can identify here that (F7_ ;)T = 1 by the fusion diagrams, therefore we obtain another equation

relating elements of the F.

o Matrix.

(Fri = (FL )2 (FL)7 (4)

TTT TTT TTT

Consider a =7,b=1,c =171
(FL ) HEFL)T = (Fr )T (FL)f

TTT TTT TTT TTT

Letd=1

(Flrr)r(FLn)T = (Fren )7 (FL)1

TTT TTT TTT TTT

Identifying (F
Letd=71

)T =1 we see that we have reached the same equation as above (4).
(Fr ) (L )T = (FL )L )T

This is a trivial equality and of no further use.

Leta=71,b=1,c=1

(F;—Tl)ﬁ(F‘ITTT)}' = (FfTT)i(F‘:—lT)g(F‘:—TT)}' + (FgTT)}’(F‘:—TT)g(F‘:—TT):
Letd=1
(F‘;—Tl)}'(F‘;—TT)’}' = (F;TT)%(FIIT)}'(F‘ITTT)}' + (F‘}TT)}r(F;—TT)‘lr(F:TT):

We can see here that (F7_,)L = (F7,.)! = (F! )L = 0 as they each correspond to an impossible fusion
process. The pentagon equation therefore reduces to 0=0 and we move on.
Letd=r

(FZ (L)L = (FLNEL)L(FL )L + (FL ) MEL )L (FL)]

TTT TTT TTT/)T TTT
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Here we have (F7 )T = (F7,)I = 1 by the fusion diagrams. Upon substitution we arrive at a third

equation relating elements of the F7__) matrix:

(FT, )k = (FL N FL ) 4 (FL )AL L) (5)

Leta=b=c=71,d=1
(FL )2 (B )7 = (FL )T (F]

TTT TTT TTT 7'17')71'(FT )'}' + (Fl ):(FT )71-(FT ):—

TTT TTT TTT TTT

Here (F}!

71T

(7, )M (FL )T = (BT )MEL )

which is trivial and of no further use.

The final case: a =b=c=d=171:

(FL 2 (FL )T = (FL T (FR ) E (L) + (FL ) E (L H(FE )]

Here (FT,

T1iT

)T =1 by the fusion rules, giving one final equation relating the elements of the F7__ matrix:

(FL )T (FL )7 = (FL )T (Bl )y + (BT )T (B )BT (6)

TTT TTT TTT TTT TTT TTT TTT

Let us now consider the given F.

7~ matrix for the Fibonacci model (1).

Subsituting this into the first equation we derived (3), we see that:
L Pt
¢ ¢ Vo o Vo

It is seen that this equation is satisfied for all ¢.

Substituting (1) into the second equation we derived (4) gives:
1 1 1

¢ Vo Vo
This equation is satisfied for all ¢.
Substituting (1) into the third equation we derived (5) gives:
1 1 1 1 -1 -1
\@:<¢x@>+ﬂw'¢'¢>

This is satisfied for ¢ = 1+2\/g: the golden ratio.

Substituting (1) into the final equation we derived (6) gives:

11 (o
P @ ¢ ¢ 9

This is satisfied for ¢ = 1+2\/g: the golden ratio.

Thus the given F' matrix for the Fibonacci model satisfies the Pentagon equation.
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Hexagon Equation

R matrix for the Fibonacci model:
e47ri/5 0
R;r = ( 0 _ezm'/5) (7)

Hexagon Equation:

Z(F§31)5R%b(F1423)Z = 53(F2413)(1: 12 (8)
b

As in the pentagon equation, set 1 =2 =3 =4 =5 = 7. The hexagon equation (8) becomes:

(FZ, ST, (FL, )% + (FL ) REy (FL,, )b = RE(FL, SRS, (9)

TTT

There are four separate cases for all pairs (a,c) € {1,7}? which must be considered.

(a) a=c=1

(F;—TT)}'RZF—T (F‘IT’TT)‘{ + (F‘;—TT)% :l(F‘IT’TT)% = R‘}'T (F‘ITTT)%RiT

It is possible to identify that R7; = 1.

Substituting from the F.

7. matrix we obtain an equation relating the components of the R.,
matrix.

1 1 1
7+,R:T:,
¢

o R:. - R:. (10)

(F‘ITTT)}'R;—T (F‘;—TT): + (F;—T’T)% II(F;-TT)}' = R’}'T (F‘IT’TT)}'R:T

It is possible to identify that R, = 1.

Substituting from the F.

7. matrix we obtain a second equation relating the components of the
R, matrix.

1 1 !

- — _—__RT RL_RT
¢\/$ ¢\/$ TT \/$ TT TT (]‘1)

(F‘ITT’T):R:T (F’ITTT)‘{ + (F‘;—TT)I :l(F‘ITTT)% = R:T (F‘ITTT)IR’}'T

It is possible to identify that R7; = 1.

Substituting from the F7__ matrix we obtain a third equation relating the components of the R.,
matrix.

T

PN N AN

This is equal to the second equation obtained (11).

1 1 1
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(d) a=T1,c=71

(T, )RL, (L )0 + (FL TR (FL )L = RE(FL IR,
It is possible to identify that R7; = 1.

Substituting from the F__ matrix we obtain a fourth and final equation relating the components
of the R,, matrix.

1 1 1
-+ 7R:T = 77R:TR:T 13
¢ ¢ ¢ 13)
We are now in a position to verify that equations (10),(11),(12),(13) hold for the given values of R}
and R7_.
Verification
Equation (10)
1 1 1
-t 7R77:T = 7R71'7' ’ R71'7'
¢ ¢

Substituting from the R matrix (7). We see that:

1 _ 1627”'/5 _ l<e4m'/5)2

P ¢ ¢
1 274 /5 473 /5\2

= ——e (e )
¢

— l 627Ti/5+ 8mi/5
¢

Convert to polar form and simplify:

. ) 2 2 8 8
e2m/5 4 e85 — cog <57r> + isin (;) + cos <57r> + isin (;)

_(1-+5) |5
-1 s
1-v5 2 1

2 14+v5 ¢

Equation (10) therefore holds for the given R matrix.

Equations (11), (12)

1 1 1
— = = ;-—7- = 7R71'TR:T
VRN Vo
1 B _627ri/5 _ _e4ﬂi/5e2ﬂi/5 _ _667ri/5
¢ ¢
— 1 e2mi/5 = . bmi/5
— p= _6767@/5 _ 674m'/5
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Convert to polar form and simplify:

_ - e _ - e
¢): —e 67i/5 —e 47i/5

(o () () () ()

__(—1—\/5)_(—1—\/5)+i §—£—i §_§
N 4 4 8 8 8 8
(1= 1445
2 2
Equations (11) and (12) therefore hold for the given R matrix.
Equation (13)
1 1 1
-+ 7R:'r = _7R:TR:T
¢ ¢? o
_e2mi/5 i 1 1 4 e4mi/5 . )
_ _ _ Ami/5 - _ T - _ —2mi/5 274 /5
1 P = —e — ¢— i/ =e +e
Convert to polar form and simplify:
_ 672772/5 _|_627r7,/5
—2 —27 2
=cos|— ) +esmm| —— | +cos| — | +28in| —
(57 +isn (37) oo (5 ) oo (5
_ (Vh-1) 5 V5 (V5-1) |5 /5
I sttt st
_Whs-ny 2 1
2 1+v5 ¢

Equation (13) therefore holds for the given R matrix.

Equations (10) - (13) are each satisfied by the given R matrix for the Fibonacci anyon model. We can
therefore conclude that the F' and R matrices for the Fibonacci anyon model are consistent with the
Pentagon and Hexagon equations.

oxXY=o0
Yxp=1
oxo=1+1Y
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