1. (a) $N_{1 a}^{c}=\delta_{a c}$

This property is the trivial statement that particles do not undergo fusion with the vaccum. This is the fundamental property of the vacuum. The δ function states that the only outcome of fusing the particle with the vacuum is to obtain the particle itself, which is the same as having no fusion take place.
(b) $N_{a b}^{1}=\delta_{b \bar{a}}$

This property states that two particles fuse to the produce vacuum (annihilate), only if they are antiparticles. If particle b annihilates to the vacuum with particle a. Then by definition, this particle is the antiparticle of a, so it can be referred to as $\mathrm{b}=\bar{a}$. A particle/antiparticle pair, have the vacuum as their unique fusion channel, thus giving rise to the δ relation.
(c) $N_{a b}^{c}=N_{b a}^{c}=N_{b \bar{c}}^{\bar{a}}=N_{\bar{a} \bar{b}}^{\bar{c}} \mathrm{~b}$
i. $N_{a b}^{c}=N_{b a}^{c}$

The first equality here follows directly from the commutativity property of the fusion rules, specifically that $a \times b=b \times a$. Therefore by changing the order of fusion between two particles, the fusion channel should remain identical.
ii. $N_{a b}^{c}=N_{b \bar{c}}^{\bar{a}}$

$$
\begin{aligned}
(a \times b) \times(\bar{c} \times \bar{a}) & =\left(\sum_{j} N_{a b}^{j} j\right) \times(\bar{c} \times \bar{a})=\sum_{j} N_{a b}^{j}(j \times \bar{c} \times \bar{a}) \\
= & N_{a b}^{c}(c \times \bar{c}) \times \bar{a}+\sum_{j \neq c} N_{a b}^{j}(j \times \bar{c} \times \bar{a}) \\
= & N_{a b}^{c} \bar{a}+\sum_{j \neq c} N_{a b}^{j}(j \times \bar{c} \times \bar{a}) \\
(a \times b) \times(\bar{c} \times \bar{a}) & =(a \times \bar{a}) \times(b \times \bar{c}) \\
& =(1) \times\left(\sum_{k} N_{b \bar{c}}^{k} k\right) \\
& =N_{b \bar{c}}^{\bar{a}} \bar{a}+\sum_{k \neq \bar{a}} N_{b \bar{c}}^{k} k \\
& =N_{a b}^{c} \bar{a}+\sum_{j \neq c} N_{b a}^{j}(j \times \bar{c} \times \bar{a})
\end{aligned}
$$

We would like here to equate the coefficients of the leading \bar{a} terms, however we must first eliminate the possibility of the final fusion term resulting in a \bar{a} anyon. $\sum_{j \neq c} N_{a b}^{j}(j \times \bar{c} \times \bar{a})$.

By the associativity of the fusion rules, $j \times \bar{c} \times \bar{a}=(j \times \bar{c}) \times \bar{a}$. Due to the fact that anyons do not fuse with the vacuum and change to a different anyon, we have $N_{m k}^{k}=\delta_{m 1}$. Thus for $(j \times c) \times \bar{a}$ to result in a \bar{a} anyon, it must be that $j \times \bar{c}=1$. As an anyon/anti-anyon pair have a unique fusion channel with the vacuum we have $N_{m}^{1} k=\delta_{m \bar{k}}$. Therefore in order for $j \times \bar{c}=1$, it must be that $j=c$. This is seen to be the original term isolated from the summation, therefore for $j \neq c$, we can not have $j \times \bar{c} \times \bar{a}$ resulting in a \bar{a} anyon.

Finally by equating the coefficients of \bar{a} it is seen that $N_{a b}^{c}=N_{b \bar{c}}^{\bar{a}}$. As required.
iii. $N_{a b}^{c}=N_{\bar{b} \bar{c}}^{\bar{c}}$.

In order to demonstrate this equality we must show that some intermediate results hold.
The process will be as follows:

$$
N_{a b}^{c}=N_{a \bar{c}}^{\bar{b}}=N_{a b \bar{c}}^{1}=N_{a}^{\bar{b} c}=N_{\bar{c}}^{\bar{a} \bar{b}}=N_{\bar{a} \bar{b}}^{\bar{c}}
$$

Firstly we have

$$
N_{a b}^{c}=N_{a \bar{c}}^{\bar{b}}
$$

from the earlier equality.
The second equality defines what it means to have three anyons undergoing fusion. To show this equality consider:

$$
a \times b \times c=\sum_{i} \sum_{j} N_{a b}^{i} N_{i c}^{j} j=N_{a b c}^{A}
$$

Where A is the outcome of fusing all three anyons. In this case we are interested in $A=1$, the vacuum. We split the above summation to the case $j=1$ and $j \neq 1$. In the former case, we are forced to take $i=c$, due to the delta relation:

$$
N_{a b}^{1}=\delta_{b \bar{a}}
$$

wihch dictates that the only way to have the vacuum as outcome from a fusion is to fuse two antiparticles. We then have:

$$
N_{a b}^{c}+\sum_{i \neq c} \sum_{j \neq 1} N_{a b}^{i} N_{i c}^{j}
$$

The first term here was obtained when we consdiered fusing thee anyons a, b, c to give the vacuum, therefore it can be expressed as $N_{a b \bar{c}}^{1}$, and we have $N_{a b}^{c}=N_{a b \bar{c}}^{1}$.
Next, we consider the composite anyon $b \times \bar{c}$. We are able to manipulate this without evaluating the exact outcome of the fusion. We have that

$$
b \times c \times \bar{b} \times \bar{c}=b \times \bar{b} \times c \times \bar{c}=(b \times \bar{b}) \times(c \times \bar{c})=1
$$

by the commutitivity and associativity properties of fusion. Therefore we know the antiparticle of the $b \times \bar{c}$ anyon is simply $\bar{b} \times c$.
Therefore by the earlier property (ii), we are able to raise the index: $b \bar{c}$, by taking its antiparticle and lowering the 1 anyon (the vacuum) which is its own antiparticle. This gives

$$
N_{a b \bar{c}}^{1}=N_{a}^{\bar{b} c}
$$

By applying this property again, to the a, c anyons, we obtain

$$
N_{a}^{\bar{b} c}=N_{\bar{c}}^{\bar{b} \bar{a}}
$$

The final step is to recall that the fusion process is time invertible as $a \times b=c$ can equivalently be seen as the particle c splitting to give a, b. Therefore we have that:

$$
N_{\bar{a}}^{\bar{b} \bar{c}}=N_{\bar{b} \bar{c}}^{\bar{a}}
$$

by time inverting the process. And consequently by considering the string of equalities demonstrated:

$$
N_{a b}^{c}=N_{a \bar{c}}^{\bar{b}}=N_{a b \bar{c}}^{1}=N_{a}^{\bar{b} c}=N_{\bar{c}}^{\bar{a} \bar{b}}=N_{\bar{a} \bar{b}}^{\bar{c}}
$$

we have that:

$$
N_{a b}^{c}=N_{\bar{b} \bar{c}}^{\bar{a}} .
$$

(d)

$$
\begin{aligned}
(a \times b) \times c & =\left(\sum_{d} N_{a b}^{e} e\right) \times c=\sum_{d}\left(\sum_{e} N_{a b}^{e} N_{e c}^{d}\right) d \\
a \times(b \times c) & =a \times \sum_{f} N_{b c}^{f} f=\sum_{d} N_{b c}^{f}(a \times f) \\
& =\sum_{d}\left(\sum_{f} N_{b c}^{f} N_{a f}^{d}\right) d=\sum_{d}\left(\sum_{f} N_{a f}^{d} N_{b c}^{f}\right) d
\end{aligned}
$$

These fusion rules are associative, meaning $(a \times b) \times c=a \times(b \times c)$, by equating the bracketed coefficients of d in each case it is seen that $\sum_{e} N_{a b}^{e} N_{e c}^{d}=\sum_{f} N_{b c}^{f} N_{a f}^{d}$ as required.
2. Consider the fusion of n anyons.

The Hilbert space defining the fusion process will therefore be:

$$
\mathcal{H}_{a_{1}, a_{2}, \ldots, a_{n-1}}^{e_{n}}=\bigoplus_{e_{1}, e_{2}, \ldots, e_{n}} \mathcal{H}_{a_{1} a_{2}}^{e_{1}} \otimes \mathcal{H}_{e_{1} a_{3}}^{e_{2}} \otimes \mathcal{H}_{e_{2} a_{4}}^{e_{3}} \otimes \cdots \otimes \mathcal{H}_{a_{n-1} e_{n-3}}^{a_{n}}
$$

This new Hilbert space will have dimension equal to:

$$
\operatorname{dim}\left(\mathcal{M}_{n}\right)=\sum_{e_{i}} N_{a_{1} a_{2}}^{e_{1}} N_{e_{1} a_{3}}^{e_{2}} N_{e_{2} a_{4}}^{e_{3}} \ldots N_{a_{n-1} e_{n-3}}^{a_{n}}
$$

If we consider the matrix N_{c} with entries $\left(N_{c}\right)_{a b}=N_{a b}^{c}$, we see that:

$$
\operatorname{dim}\left(\mathcal{M}_{n}\right)=\sum_{e_{i}} N_{a_{1} a_{2}}^{e_{1}} N_{e_{1} a_{3}}^{e_{2}} N_{e_{2} a_{4}}^{e_{3}} \ldots N_{a_{n-1} e_{n-3}}^{a_{n}}=\left(N_{a_{2}} N_{a_{3}} \ldots N_{a_{n}}\right)_{a_{1}}^{b_{n}}
$$

We then have

$$
\operatorname{dim}\left(\mathcal{H}_{a_{1}, a_{2}, \ldots, a_{n-1}}\right)=\left(N_{a_{2}} N_{a_{3}} \ldots N_{a_{n}}\right)_{a_{1}}^{e_{n}}=\left[N_{a}^{(n-1)}\right]_{a}^{e_{n}} \approx d_{a}^{n}
$$

3. It is possible to create an entangled state, however it is not possible through topologically protected operations alone. More information can be found here:

Brennen, G. K., Iblisdir, S., Pachos, J. K. and Slingerland, J. K. 2009. New J. Phys. 11, 103023

4. Pentagon Equation

F matrix for the Fibonacci model:

$$
F_{\tau \tau \tau}^{\tau}=\left(\begin{array}{cc}
\frac{1}{\phi} & \frac{1}{\sqrt{\phi}} \tag{1}\\
\frac{1}{\sqrt{\phi}} & -\frac{1}{\phi}
\end{array}\right)
$$

Pentagon Equation:

$$
\begin{equation*}
\left(F_{12 c}^{5}\right)_{a}^{d}\left(F_{a 34}^{5}\right)_{b}^{c}=\sum_{e}\left(F_{234}^{d}\right)_{e}^{c}\left(F_{1 e 4}^{5}\right)_{b}^{d}\left(F_{123}^{b}\right)_{a}^{e} \tag{2}
\end{equation*}
$$

The only non-trivial pentagon arises when $1=2=3=4=5=\tau$ [1]. The pentagon equation (2) therefore becomes:

$$
\left(F_{\tau \tau c}^{\tau}\right)_{a}^{d}\left(F_{a \tau \tau}^{\tau}\right)_{b}^{c}=\sum_{e}\left(F_{\tau \tau \tau}^{d}\right)_{e}^{c}\left(F_{\tau e \tau}^{\tau}\right)_{b}^{d}\left(F_{\tau \tau \tau}^{b}\right)_{a}^{e}
$$

Let $a=1$.

$$
\left(F_{\tau \tau c}^{\tau}\right)_{1}^{d}\left(F_{1 \tau \tau}^{\tau}\right)_{b}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{c}\left(F_{\tau 1 \tau}^{\tau}\right)_{b}^{d}\left(F_{\tau \tau \tau}^{b}\right)_{1}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{b}^{d}\left(F_{\tau \tau \tau}^{b}\right)_{1}^{\tau}
$$

Let $b=1$.

$$
\left(F_{\tau \tau c}^{\tau}\right)_{1}^{d}\left(F_{1 \tau \tau}^{\tau}\right)_{1}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{c}\left(F_{\tau 1 \tau}^{\tau}\right)_{1}^{d}\left(F_{\tau \tau \tau}^{1}\right)_{1}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{d}\left(F_{\tau \tau \tau}^{1}\right)_{1}^{\tau}
$$

Here we can identify that $\left(F_{1 \tau \tau}^{\tau}\right)_{1}^{c}=\left(F_{\tau \tau \tau}^{1}\right)_{1}^{\tau}=\left(F_{\tau 1 \tau}^{\tau}\right)_{1}^{d}=0$ as they each correspond to an impossible fusion process. The pentagon equation therefore reduces to $0=0$ and we move on.

Let $a=1, b=\tau$.

$$
\left(F_{\tau \tau c}^{\tau}\right)_{1}^{d}\left(F_{1 \tau \tau}^{\tau}\right)_{\tau}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{c}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

Let $a=1, b=\tau, c=1$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{1}^{d}\left(F_{1 \tau \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

Here $\left(F_{\tau \tau 1}^{\tau}\right)_{1}^{d}=\left(F_{1 \tau \tau}^{\tau}\right)_{\tau}^{1}=0$ as they each corresponds to an impossible fusion process. So we have:

$$
0=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

Which means:

$$
\left(F_{\tau \tau \tau}^{d}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=-\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

Let $a=1, b=\tau, c=1, d=1$.

$$
\left(F_{\tau \tau \tau}^{1}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=-\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

Here we have $\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}=0$ as they correspond to impossible fusion processes. The pentagon equation therefore reduces to $0=0$ and we move on.

Let $a=1, b=\tau, c=1, d=\tau$.

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=-\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

We can see here that $\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}=1$ by the fusion diagrams. Upon substitution we arrive at an equation relating elements of the $F_{\tau \tau \tau}^{\tau}$ matrix:

$$
\begin{equation*}
\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=-\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau} \tag{3}
\end{equation*}
$$

Letting $a=\tau$, the pentagon equation (2) becomes:

$$
\left(F_{\tau \tau c}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{b}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{c}\left(F_{\tau 1 \tau}^{\tau}\right)_{b}^{d}\left(F_{\tau \tau \tau}^{b}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{b}^{d}\left(F_{\tau \tau \tau}^{b}\right)_{\tau}^{\tau}
$$

Let $a=\tau, b=1$

$$
\left(F_{\tau \tau c}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{c}\left(F_{\tau 1 \tau}^{\tau}\right)_{1}^{d}\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{d}\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}
$$

We have $\left(F_{\tau 1 \tau}^{\tau}\right)_{1}^{d}=0$ as it corresponds to an impossible fusion process, also $\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}=1$ by the fusion diagram. Therefore:

$$
\left(F_{\tau \tau c}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{c}=\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{d}
$$

Let $a=\tau, b=1, c=1$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{d}
$$

Let $a=\tau, b=1, c=1, d=1$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}
$$

Here we see that $\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}=0$ as they correspond to impossible fusion processes. Thus the pentagon equation reduces to $0=0$ and we move on.
Let $a=\tau, b=1, c=1, d=\tau$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

We can identify here that $\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{\tau}=1$ by the fusion diagrams, therefore we obtain another equation relating elements of the $F_{\tau \tau \tau}^{\tau}$ matrix.

$$
\begin{equation*}
\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau} \tag{4}
\end{equation*}
$$

Consider $a=\tau, b=1, c=\tau$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}=\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{d}
$$

Let $d=1$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}=\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}
$$

Identifying $\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}=1$ we see that we have reached the same equation as above (4).
Let $d=\tau$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}=\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}
$$

This is a trivial equality and of no further use.
Let $a=\tau, b=\tau, c=1$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{d}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{d}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{d}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

Let $d=1$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{1}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

We can see here that $\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{1}=0$ as they each correspond to an impossible fusion process. The pentagon equation therefore reduces to $0=0$ and we move on.
Let $d=\tau$

$$
\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

Here we have $\left(F_{\tau \tau 1}^{\tau}\right)_{\tau}^{\tau}=\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}=1$ by the fusion diagrams. Upon substitution we arrive at a third equation relating elements of the $F_{\tau \tau \tau}^{\tau}$) matrix:

$$
\begin{equation*}
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau} \tag{5}
\end{equation*}
$$

Let $a=b=c=\tau, d=1$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}=\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

Here $\left(F_{\tau 1 \tau}^{1}\right)_{\tau}^{1}=0$ and $\left(F_{\tau \tau \tau}^{1}\right)_{\tau}^{\tau}=1$, giving:

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}=\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

which is trivial and of no further use.
The final case: $a=b=c=d=\tau$:

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}=\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}
$$

Here $\left(F_{\tau 1 \tau}^{\tau}\right)_{\tau}^{\tau}=1$ by the fusion rules, giving one final equation relating the elements of the $F_{\tau \tau \tau}^{\tau}$ matrix:

$$
\begin{equation*}
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}=\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}+\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau} \tag{6}
\end{equation*}
$$

Let us now consider the given $F_{\tau \tau \tau}^{\tau}$ matrix for the Fibonacci model (1).
Subsituting this into the first equation we derived (3), we see that:

$$
\frac{1}{\phi} \cdot \frac{1}{\phi}=-\left(\frac{1}{\sqrt{\phi}} \cdot \frac{-1}{\phi} \cdot \frac{1}{\sqrt{\phi}}\right)
$$

It is seen that this equation is satisfied for all ϕ.
Substituting (1) into the second equation we derived (4) gives:

$$
\frac{1}{\phi}=\frac{1}{\sqrt{\phi}} \cdot \frac{1}{\sqrt{\phi}}
$$

This equation is satisfied for all ϕ.
Substituting (1) into the third equation we derived (5) gives:

$$
\frac{1}{\sqrt{\phi}}=\left(\frac{1}{\phi} \cdot \frac{1}{\sqrt{\phi}}\right)+\left(\frac{1}{\sqrt{\phi}} \cdot \frac{-1}{\phi} \cdot \frac{-1}{\phi}\right)
$$

This is satisfied for $\phi=\frac{1+\sqrt{5}}{2}$: the golden ratio.
Substituting (1) into the final equation we derived (6) gives:

$$
\frac{1}{\phi^{2}}=\frac{1}{\phi}+\left(\frac{-1}{\phi} \cdot \frac{-1}{\phi} \cdot \frac{-1}{\phi}\right)
$$

This is satisfied for $\phi=\frac{1+\sqrt{5}}{2}$: the golden ratio.
Thus the given F matrix for the Fibonacci model satisfies the Pentagon equation.

Hexagon Equation

R matrix for the Fibonacci model:

$$
R_{\tau \tau}=\left(\begin{array}{cc}
e^{4 \pi i / 5} & 0 \tag{7}\\
0 & -e^{2 \pi i / 5}
\end{array}\right)
$$

Hexagon Equation:

$$
\begin{equation*}
\sum_{b}\left(F_{231}^{4}\right)_{b}^{c} R_{1 b}^{4}\left(F_{123}^{4}\right)_{a}^{b}=R_{13}^{c}\left(F_{213}^{4}\right)_{1}^{c} R_{12}^{a} \tag{8}
\end{equation*}
$$

As in the pentagon equation, set $1=2=3=4=5=\tau$. The hexagon equation (8) becomes:

$$
\begin{equation*}
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{c} R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{a}^{\tau}+\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{c} R_{\tau 1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{a}^{1}=R_{\tau \tau}^{c}\left(F_{\tau \tau \tau}^{\tau}\right)_{a}^{c} R_{\tau \tau}^{a} \tag{9}
\end{equation*}
$$

There are four separate cases for all pairs $(a, c) \in\{1, \tau\}^{2}$ which must be considered.
(a) $a=c=1$

$$
\left(F_{\tau \tau \tau}^{\tau}\right){ }_{\tau}^{1} R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}+\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1} R_{\tau 1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=R_{\tau \tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1} R_{\tau \tau}^{1}
$$

It is possible to identify that $R_{\tau 1}^{\tau}=1$.
Substituting from the $F_{\tau \tau \tau}^{\tau}$ matrix we obtain an equation relating the components of the $R_{\tau \tau}$ matrix.

$$
\begin{equation*}
\frac{1}{\phi^{2}}+\frac{1}{\phi} R_{\tau \tau}^{\tau}=\frac{1}{\phi} R_{\tau \tau}^{1} \cdot R_{\tau \tau}^{1} \tag{10}
\end{equation*}
$$

(b) $a=\tau, c=1$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1} R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}+\left(F_{\tau \tau \tau}^{\tau}\right){ }_{1}^{1} R_{\tau 1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=R_{\tau \tau}^{1}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1} R_{\tau \tau}^{\tau}
$$

It is possible to identify that $R_{\tau 1}^{\tau}=1$.
Substituting from the $F_{\tau \tau \tau}^{\tau}$ matrix we obtain a second equation relating the components of the $R_{\tau \tau}$ matrix.

$$
\begin{equation*}
\frac{1}{\phi \sqrt{\phi}}-\frac{1}{\phi \sqrt{\phi}} R_{\tau \tau}^{\tau}=\frac{1}{\sqrt{\phi}} R_{\tau \tau}^{1} R_{\tau \tau}^{\tau} \tag{11}
\end{equation*}
$$

(c) $a=1, c=\tau$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau} R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau}+\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau} R_{\tau 1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{1}=R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau} R_{\tau \tau}^{1}
$$

It is possible to identify that $R_{\tau 1}^{\tau}=1$.
Substituting from the $F_{\tau \tau \tau}^{\tau}$ matrix we obtain a third equation relating the components of the $R_{\tau \tau}$ matrix.

$$
\begin{equation*}
\frac{1}{\phi \sqrt{\phi}}-\frac{1}{\phi \sqrt{\phi}} R_{\tau \tau}^{\tau}=\frac{1}{\sqrt{\phi}} R_{\tau \tau}^{1} R_{\tau \tau}^{\tau} \tag{12}
\end{equation*}
$$

This is equal to the second equation obtained (11).
(d) $a=\tau, c=\tau$

$$
\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau} R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau}+\left(F_{\tau \tau \tau}^{\tau}\right)_{1}^{\tau} R_{\tau 1}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{1}=R_{\tau \tau}^{\tau}\left(F_{\tau \tau \tau}^{\tau}\right)_{\tau}^{\tau} R_{\tau \tau}^{\tau}
$$

It is possible to identify that $R_{\tau 1}^{\tau}=1$.
Substituting from the $F_{\tau \tau \tau}^{\tau}$ matrix we obtain a fourth and final equation relating the components of the $R_{\tau \tau}$ matrix.

$$
\begin{equation*}
\frac{1}{\phi}+\frac{1}{\phi^{2}} R_{\tau \tau}^{\tau}=-\frac{1}{\phi} R_{\tau \tau}^{\tau} R_{\tau \tau}^{\tau} \tag{13}
\end{equation*}
$$

We are now in a position to verify that equations $(10),(11),(12),(13)$ hold for the given values of $R_{\tau \tau}^{1}$ and $R_{\tau \tau}^{\tau}$.

Verification

Equation (10)

$$
\frac{1}{\phi^{2}}+\frac{1}{\phi} R_{\tau \tau}^{\tau}=\frac{1}{\phi} R_{\tau \tau}^{1} \cdot R_{\tau \tau}^{1}
$$

Substituting from the R matrix (7). We see that:

$$
\begin{aligned}
& \frac{1}{\phi^{2}}-\frac{1}{\phi} e^{2 \pi i / 5}=\frac{1}{\phi}\left(e^{4 \pi i / 5}\right)^{2} \\
& \Longrightarrow \frac{1}{\phi}-e^{2 \pi i / 5}=\left(e^{4 \pi i / 5}\right)^{2} \\
& \Longrightarrow \frac{1}{\phi}=e^{2 \pi i / 5}+e^{8 \pi i / 5}
\end{aligned}
$$

Convert to polar form and simplify:

$$
\begin{aligned}
e^{2 \pi i / 5}+e^{8 \pi i / 5} & =\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right)+\cos \left(\frac{8 \pi}{5}\right)+i \sin \left(\frac{8 \pi}{5}\right) \\
& =\frac{(1-\sqrt{5})}{4}+i \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}}+\frac{(1-\sqrt{5})}{4}-i \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} \\
& =\frac{(1-\sqrt{5})}{2}=\frac{2}{1+\sqrt{5}}=\frac{1}{\phi}
\end{aligned}
$$

Equation (10) therefore holds for the given R matrix.
Equations (11), (12)

$$
\begin{gathered}
\frac{1}{\phi \sqrt{\phi}}-\frac{1}{\phi \sqrt{\phi}} R_{\tau \tau}^{\tau}=\frac{1}{\sqrt{\phi}} R_{\tau \tau}^{1} R_{\tau \tau}^{\tau} \\
\frac{1}{\phi}-\frac{-e^{2 \pi i / 5}}{\phi}=-e^{4 \pi i / 5} e^{2 \pi i / 5}=-e^{6 \pi i / 5} \\
\Longrightarrow 1-e^{2 \pi i / 5}=-\phi \cdot e^{6 \pi i / 5} \\
\Longrightarrow \phi \\
\Longrightarrow-e^{-6 \pi i / 5}-e^{-4 \pi i / 5}
\end{gathered}
$$

Convert to polar form and simplify:

$$
\begin{aligned}
\phi & =-e^{-6 \pi i / 5}-e^{-4 \pi i / 5} \\
& =-\left(\cos \left(\frac{-6 \pi}{5}\right)+i \sin \left(\frac{-6 \pi}{5}\right)+\cos \left(\frac{-4 \pi}{5}\right)+i \sin \left(\frac{-4 \pi}{5}\right)\right) \\
& =-\frac{(-1-\sqrt{5})}{4}-\frac{(-1-\sqrt{5})}{4}+i \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}-i \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}} \\
& =-\frac{(-1-\sqrt{5})}{2}=\frac{1+\sqrt{5}}{2}
\end{aligned}
$$

Equations (11) and (12) therefore hold for the given R matrix.

Equation (13)

$$
\begin{gathered}
\frac{1}{\phi}+\frac{1}{\phi^{2}} R_{\tau \tau}^{\tau}=-\frac{1}{\phi} R_{\tau \tau}^{\tau} R_{\tau \tau}^{\tau} \\
1-\frac{-e^{2 \pi i / 5}}{\phi}=-e^{4 \pi i / 5} \Longrightarrow \frac{1}{\phi}=\frac{1+e^{4 \pi i / 5}}{e^{2 \pi i / 5}}=e^{-2 \pi i / 5}+e^{2 \pi i / 5}
\end{gathered}
$$

Convert to polar form and simplify:

$$
\begin{aligned}
\frac{1}{\phi} & =e^{-2 \pi i / 5}+e^{2 \pi i / 5} \\
& =\cos \left(\frac{-2 \pi}{5}\right)+i \sin \left(\frac{-2 \pi}{5}\right)+\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right) \\
& =\frac{(\sqrt{5}-1)}{4}-i \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}}+\frac{(\sqrt{5}-1)}{4}+i \sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}} \\
& =\frac{(\sqrt{5}-1)}{2}=\frac{2}{1+\sqrt{5}}=\frac{1}{\phi}
\end{aligned}
$$

Equation (13) therefore holds for the given R matrix.
Equations (10) - (13) are each satisfied by the given R matrix for the Fibonacci anyon model. We can therefore conclude that the F and R matrices for the Fibonacci anyon model are consistent with the Pentagon and Hexagon equations.

$$
\begin{aligned}
\sigma \times \psi & =\sigma \\
\psi \times \psi & =1 \\
\sigma \times \sigma & =1+\psi
\end{aligned}
$$

References

[1] Trebst et al. (2008). A Short Introduction to Fibonacci Anyon Models. Progress of Theoretical Physics Supplement. 176

