7.1

Problem

Demonstrate that the Abelian Chern-Simons action (7.7) is invariant under the gauge transformation

$$
\begin{equation*}
A_{\mu}(x) \longrightarrow A_{\mu}^{\omega}(x)=A_{\mu}(x)+\partial \omega(x) \tag{1}
\end{equation*}
$$

For the derivation assume that A_{μ} goes to zero at the boundaries of the system.

Solution

The gauge we are applying is

$$
\begin{equation*}
A_{\mu}(x) \longrightarrow A_{\mu}^{\omega}(x)=A_{\mu}(x)+\partial \omega \tag{2}
\end{equation*}
$$

with ω being a scalar field. Applying this gauge to the Chern-Simons action we get

$$
\begin{equation*}
I_{C S}^{\omega}=\frac{m}{2} \int_{M} d^{3} x \varepsilon^{\mu \nu \rho}\left(A_{\mu}+\partial_{\mu} \omega\right) \partial_{\nu}\left(A_{\rho}+\partial_{\rho} \omega\right) \tag{3}
\end{equation*}
$$

Implying:

$$
\begin{equation*}
I_{C S}^{\omega}=I_{C S}+\int_{M} d^{3} x \varepsilon^{\mu \nu \rho}\left(\partial_{\mu} \omega \partial_{\nu} A_{\rho}+\partial_{\mu} \omega \partial_{\nu} \partial_{\rho} \omega+A_{\mu} \partial_{\nu} \partial_{\rho} \omega\right) \tag{4}
\end{equation*}
$$

If we consider the second and fourth term on the RHS we can represent them as a surface integral of a total derivative

$$
\begin{equation*}
\partial_{\mu} \omega \partial_{\nu} A_{\rho}+A_{\mu} \partial_{\nu} \partial_{\rho} \omega=\partial_{\nu} \omega \partial_{\rho} A_{\mu}+A_{\mu} \partial_{\nu} \partial_{\rho} \omega=\partial_{\rho}\left(A_{\mu} \partial_{\nu} \omega\right) \tag{5}
\end{equation*}
$$

And so this term can be ignored, the third term can be represented as

$$
\begin{align*}
\varepsilon^{\mu \nu \rho} \partial_{\mu} \omega \partial_{\nu} \partial_{\rho} \omega & =\partial_{0} \omega\left(\partial_{1} \partial_{2} \omega-\partial_{2} \partial_{1} \omega\right) \tag{6}\\
+\partial_{1} \omega\left(\partial_{2} \partial_{0} \omega-\partial_{0} \partial_{2} \omega\right) & +\partial_{2} \omega\left(\partial_{0} \partial_{1} \omega-\partial_{1} \partial_{0} \omega\right)
\end{align*}
$$

which vanishes as $\left[\partial_{i}, \partial_{j}\right]=0$ for all i and j , so finally we get

$$
\begin{equation*}
I_{C S}^{\omega}=I_{C S} \tag{7}
\end{equation*}
$$

7.2

Problem

Consider the Abelian Chern-Simons theory for a given m. Take a source to be a disk of radius R with homogeneous distribution of charge Q on it. Derive the spin (7.14) of the source by calculating the total phase accumulated from the charge when we rotate the disk by 2 n . [Hint: Evaluate the phase of a small ring of charge of radius $0 \leq r \leq R$ due to the flux enclosed by the ring].

Solution

It is known that the phase of a ring rotating around an enclosed flux is given by $\phi=q \Phi$, ring charge q, but when considering the effects on a disk, the variation in flux and charge density with respect to the radius of the disk must be taken into consideration, and so

$$
\begin{equation*}
2 \phi(r)=\rho A(r) \Phi(r) \tag{8}
\end{equation*}
$$

where ρ is the charge density of the disk, Φ how the enclosed flux varies with radius r and A the area of the disk $A(r)=2 \pi r d r, 2 \pi r$ the circumference of the ring and the $d r$ element an extension of the ring into a disk. As the charge is homogeneously distributed, it is just an integration of the charge density over the area the charge occupies. Integrating this ring into a disk:

$$
\begin{equation*}
A=\int_{r}^{R} A(r)=\int_{r}^{R} 2 \pi r d r=\pi R^{2}-\pi r^{2} \tag{9}
\end{equation*}
$$

The flux as found in (7.12) is

$$
\begin{equation*}
\Phi=\frac{Q(r)}{m}=\frac{\rho A_{T}(r)}{m} \tag{10}
\end{equation*}
$$

where A_{T} is the area enclosed by the outer surface of the disk $\left(\pi r^{2}\right)$, as this is the total contained flux of the system, therefore does not depend on the inner geometry of the disk. This is unlike the area A which was the area in which the charge q of the ring was 'stretched' to form the disk of charge, as the area A_{T} is the area encompassed by the total charge of the disk Q, i.e. the total area contained within the outer radius of the disk. $\Phi(r)$ is the effect of
the enclosed flux together with the area it is encompassing. Applying these ideas into the phase we derive

$$
\begin{equation*}
2 \phi(r)=\rho A \Phi(r)=\rho\left(\pi R^{2}-\pi r^{2}\right) \frac{\rho A_{T}(r)}{m} . \tag{11}
\end{equation*}
$$

For the total phase we integrate over this ring:

$$
\begin{equation*}
2 \phi=\int_{0}^{R} \phi(r)=\int_{0}^{R} \rho\left(\pi R^{2}-\pi r^{2}\right) \frac{\rho A_{T}(r)}{m}=\frac{2 \pi^{2} \rho^{2}}{m}\left[R^{2} r^{2}-\frac{r^{4}}{2}\right]_{0}^{R} \tag{12}
\end{equation*}
$$

giving a final phase independent of r :

$$
\begin{equation*}
\phi=\frac{\rho^{2}}{2 m} \pi^{2} R^{4} \tag{13}
\end{equation*}
$$

The area enclosed by the disk is given by radius R , and so $\rho \pi R^{2}=Q$, which can be taken twice resulting in

$$
\begin{equation*}
\phi=\frac{Q^{2}}{2 m} . \tag{14}
\end{equation*}
$$

It is known a circulation of an anyon around itself is given by a spin phase $s=\frac{\phi}{2 \pi}$, and finally we arrive at:

$$
\begin{equation*}
s=\frac{Q^{2}}{4 \pi m} \tag{15}
\end{equation*}
$$

7.3

Problem

Prove that

$$
\begin{equation*}
e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}=\mathcal{A}+\lambda[\mathcal{A}, \mathcal{B}] \tag{16}
\end{equation*}
$$

when $[\mathcal{A},[\mathcal{A}, \mathcal{B}]]=[\mathcal{B},[\mathcal{B}, \mathcal{A}]]=0$. Then demonstrate that relation (7.71) holds. [Hint: Consider the function $f(x)=e^{x \mathcal{A}} e^{x \mathcal{B}}$ and its differentiation with respect to x].

Solution

Taking the derivative of the function in the hint acting on a lie algebra element we get

$$
\begin{equation*}
\frac{d}{d \lambda}\left(e^{\lambda \mathcal{A}} e^{\lambda \mathcal{B}}\right)=\mathcal{A} e^{\lambda \mathcal{A}} e^{\lambda \mathcal{B}}+e^{\lambda \mathcal{A}} \mathcal{B} e^{\lambda \mathcal{B}} \tag{17}
\end{equation*}
$$

As $\left[\mathcal{B}, e^{\lambda \mathcal{B}}\right]=0$ these elements can be swapped, applying this derivative to the equation we wish to solve

$$
\begin{align*}
\frac{d}{d \lambda}\left(e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}\right) & =-\mathcal{B} e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}+e^{-\lambda \mathcal{B}} \mathcal{A B} e^{\lambda \mathcal{B}} \tag{18}\\
& =-\mathcal{B} e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}+e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}} \mathcal{B}
\end{align*}
$$

If we define an operator $a d_{X} Y=[X, Y]=X Y-Y X$, the last equation can be written as $a d_{-\mathcal{B}}\left(e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}\right)$, so we find that

$$
\begin{equation*}
f^{\prime}(\lambda)=a d_{-\mathcal{B}} f(\lambda) \tag{19}
\end{equation*}
$$

and as $f(0)=1$ it is clear that $f(\lambda)=e^{\lambda a d_{-\mathcal{B}}}$. This gives us an alternative form of our original equation

$$
\begin{equation*}
e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}=f(\lambda) \mathcal{A}=e^{\lambda a d_{-\mathcal{B}}} \mathcal{A} \tag{20}
\end{equation*}
$$

Using the expansion of the exponential

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2}+\ldots \tag{21}
\end{equation*}
$$

And finally, we can derive the expression

$$
\begin{array}{r}
e^{-\lambda \mathcal{B}} \mathcal{A} e^{\lambda \mathcal{B}}=e^{\lambda a d_{-\mathcal{B}}} \mathcal{A}=\left(1+\lambda a d_{-\mathcal{B}}+\left(\lambda a d_{-\mathcal{B}}\right)^{2}+\ldots\right) \mathcal{A} \\
=\mathcal{A}+[-\lambda \mathcal{B}, \mathcal{A}]+\frac{1}{2}[-\lambda \mathcal{B},[-\lambda \mathcal{B}, \mathcal{A}]]+\ldots \tag{22}\\
=\mathcal{A}+\lambda[\mathcal{A}, \mathcal{B}]
\end{array}
$$

