Skip to main content

Publications

Google Scholar
Researchgate

Submitted

    1. A local photon perspective on the momentum of light,
      G. Waite, D. Hodgson, B. Lang, V. Alapatt and A. Beige.
    2. Towards Timetronics with Photonic Systems,
      A. E. Kopaei, K. S. Eswaran, A. Kosior, D. Hodgson, A. Matsko, H. Taheri, A. Beige, and K. Sacha. arXiv:2409.07885.
    3. Something from Nothing: A Theoretical Framework for Enhancing or Enabling Cooling of a Mechanical Resonator via the anti-Stokes or Stokes Interaction and Zero-Photon Detection,
      J. Clarke, E. A. Cryer-Jenkins, A. Gupta, K. D. Major, J. Zhang, G. Enzian, M. Szczykulska, A. C. Leung, H. Rathee, A. Ø. Svela, A. K. C. Tan, A. Beige, K. Mølmer, and M. R. Vanner. arXiv:2408.01735.
    4. Something from Nothing: Enhanced Laser Cooling of a Mechanical Resonator via Zero-Photon Detection,
      E. A. Cryer-Jenkins, K. D. Major, J. Clarke, G. Enzian, M. Szczykulska, J. Zhang, A. Gupta, A. C. Leung, H. Rathee, A. Ø. Svela, A. K. C. Tan, A. Beige, K. Mølmer, and M. R. Vanner. arXiv:2408.01734.
    5. An intuitive picture of the Casimir effect,
      D. Hodgson, C. Burgess, M. B. Altaie, A. Beige, and R. Purdy. arXiv:2203.14385.

Published

    1. Women for Quantum-Manifesto of Values,
      A. Beige, A. Predojević, A. Metelmann, A. Sanpera, C. Macchiavello, C. P. Koch, C. Silberhorn, C. Toninelli, D. Bruß, E. Ercolessi, E. Paladino, F. Ferlaino, G. Ferrini, G. Platero, I. Fuentes, K. Nemoto, L. Tarruell, M. Bondani, M. Chiofalo, M. Pons, M. D'Angelo, M. Murao, N. Fabbri, P. Verrucchi, P. Senellart-Mardon, R. Citro, R. Zambrini, R. González-Férez, S. Maniscalco, S. Huelga, T. Mehlstäubler, V. Parigi, and V. Ahufinger. arXiv:2203.14385.
    2. Mirror-mediated ultralong-range dipole-dipole interactions,
      N. Furtak-Wells, B. Dawson, T. Mann, G. Jose, and A. Beige, Opt. Quantum Electron. 56, 1287 (2024). arXiv:2305.18826.
    3. Quantum physics cannot be captured by classical linear hidden variable theories even in the absence of entanglement,
      K. Al Rasbi, L. A. Clark, and A. Beige, Front. Phys. 12, 1325239 (2024). arXiv:2310.13815.
    4. A simple quantum picture of the relativistic Doppler effect,
      D. Hodgson, S. Kanzi, and A. Beige, Symmetry 16, 279 (2024). arXiv:2401.02175.

    5. Remote non-invasive Fabry-Perot cavity spectroscopy for label-free sensing,
      A. Al Ghamdi, B. Dawson, G. Jose, and A. Beige, Sensors 23, 385 (2023). arXiv:2208.05566.

    1. Quantum jump metrology in a two-cavity network,
      K. Al Rasbi, A. Beige, and L. A. Clark, Phys. Rev. A 106, 062619 (2022). arXiv:2201.04412.
    2. Local photons,
      D. Hodgson, J. Southall, R. Purdy, and A. Beige, Front. Photon. 3, 978855 (2022). arXiv:2104.04499.
    3. Comparing Hermitian and non-Hermitian Quantum Electrodynamics,
      J. Southall, D. Hodgson, R. Purdy, and A. Beige, Symmetry 14, 1816 (2022). arXiv:2208.01532.
    4. Time and Quantum Clocks: a review of recent developments,
      M. B. Altaie, A. Beige, and D. Hodgson, Front. Phys. 10, 897305 (2022). arXiv:2203.12564.

    1. The quantum optics of asymmetric mirrors with coherent light absorption,
      B. Dawson, N. Furtak-Wells, T. Mann, G. Jose, and A. Beige, Front. Photon. 2, 700737 (2021). arXive:2107.01279.
    2. Locally-acting mirror Hamiltonians,
      J. Southall, D. Hodgson, R. Purdy and A. Beige, J. Mod. Opt. 68, 647 (2021)arXiv:1908.07597.

    1. Non-ergodicity in open quantum systems through quantum feedback,
      L. A. Clark, F. Torzewska, B. Maybee, and A. Beige, EPL 130, 54002 (2020)arXiv:1611.03716.
    2. Spontaneous emission of atomic dipoles near two-sided semi-transparent mirrors,
      B. Dawson, N. Furtak-Wells, T. Mann, G. Jose, and A. Beige, Proc. SPIE 11345, 113451C (2020). arXiv:2004.10897.
    3. A quantum heat exchanger for nanotechnology,
      A. Aljaloud, S. A. Peyman, and A. Beige, Entropy 22, 379 (2020). arXiv:2003.09892.

    1. A physically-motivated quantisation of the electromagnetic field on curved spacetimes,
      B. Maybee, D. Hodgson, A. Beige, and R. Purdy, Entropy 21, 844 (2019). arXiv:1811.09594.
    2. Efficient long-distance energy transport in molecular systems through adiabatic passage,
      A. G. Dijkstra and A. Beige, J. Chem. Phys. 151, 034114 (2019). arXiv:1906.06244.
    3. Quantum jump metrology,
      L. A. Clark, A. Stokes, and A. Beige, Phys. Rev. A 99, 022102 (2019). arXiv:1811.01004.

    1. Cavity-mediated collective laser-cooling of a non-interacting atomic gas inside an asymmetric trap to very low temperatures,
      O. Kim, P. Deb, and A. Beige, J. Mod. Opt. 65, 693 (2018)arXiv:1506.02910.
    2. Quantising the electromagnetic field near two-sided semi-transparent mirrors,
      N. Furtak-Wells, L. A. Clark, R. Purdy, and A. Beige, Phys. Rev. A 97, 043827 (2018). arXiv:1704.02898.

    1. Journeys from Quantum Optics to Quantum Technology,
      S. M. Barnett, A. Beige, A. Ekert, B. M. Garraway, C. H. Keitel, V. Kendon, M. Lein, G. J.Milburn, H. M. Moya-Cessa, M. Murao, J. K. Pachos, M. Palma, E. Paspalakis, S. J. D. Phoenix, B. Piraux, M. B. Plenio, B. C. Sanders, J. Twamley, A. Vidiella-Barranco, and M. S. Kim, Prog. Quant. Electron. 54, 19 (2017).  arxiv:1707.03296.
    2. Using thermodynamics to identify quantum subsystems,
      A. Stokes, P. Deb, and A. Beige, J. Mod. Opt. 64, S7 (2017). arXiv:1602.04037.
    3. Improved Eavesdropping Detection in Quantum Key Distribution,
      M. M. Khan, J. Xu, and A. Beige, IJCSIS 15, 536 (2017).
    4. A Detailed Analysis of KMB09 QKD Protocol,
      M. M. Khan, J. Xu, and A. Beige, IJCSIS 15, 529 (2017).
    5. Quantum-enhanced metrology without entanglement based on optical cavities with feedback,
      L. A. Clark, A. Stokes, M. M. Khan, G. Wang, and A. Beige, PHOTOPTICS conference proceedings (2017). arXiv:1609.02412.

    1. Quantum-enhanced metrology with the single-mode coherent states of an optical cavity inside a quantum feedback loop,
      L. A. Clark, A. Stokes, and A. Beige, Phys. Rev. A 94, 023840 (2016). arXiv:1512.01497.
    2. A new take on the slit experiment,
      A. Beige, Nat. Photon. 10, 290 (2016).
    3. A physically-motivated quantisation of the electromagnetic field,
      R. Bennett, T. M. Barlow, and A. Beige, Eur. J. Phys. 37, 014001 (2016). arXiv:1506.03305.

    1. A cavity-mediated collective quantum effect in sonoluminescing bubbles,
      O. Kim and A. Beige,  J. Phys. Conf. Ser. 656, 012177 (2015). arXiv:1508.07160.
    2. An alternative power spectrum of the resonance fluorescence of atomic systems,
      A. Stokes and A. Beige, Eur. Phys. J. D 69, 131 (2015). arXiv:1304.0264.
    3. A master equation for a two-sided optical cavity,
      T. M. Barlow, R. Bennett, and A. Beige, J. Mod. Opt. 62, S11 (2015). arXiv:1307.3545.
    4. Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback,
      L. A. Clark, W. Huang, T. M. Barlow, and A. Beige, ISCS 2014: Interdisciplinary Symposium on Complex Systems, Emergence, Complexity and Computation 14, p. 143, Springer (2015). arXiv:1406.5847.

    1. Repeat-until-success quantum repeaters,
      D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, Phys. Rev. A 90, 032306 (2014). arXiv:1407.3362.

    1. Mollow triplet for cavity-mediated laser cooling,
      O. Kim and A. Beige, Phys. Rev. A 88, 053417 (2013). arXiv:1307.7400.

    1. Environment-induced heating in sonoluminescence experiments,
      A. Beige, A. Capolupo, and A. Kurcz, Conf. Proc. for CAV 2012 in Singapore (2012). arXiv:1207.7022.
    2. Hidden Quantum Markov Models with one qubit,
      B. O`Neill, T. M. Barlow, D. Safranek, and A. Beige, AIP Conf. Proc. 1479, 667 (2012). arXiv:1207.4304.
    3. A rate equation approach to cavity mediated laser cooling,
      T. Blake, A. Kurcz, and A. Beige, Phys. Rev. A 86, 013419 (2012). arXiv:1202.2992.
    4. Extending the validity range of quantum optical master equations,
      A. Stokes, A. Kurcz, T. P. Spiller, and A. Beige, Phys. Rev. A 85, 053805 (2012). arXiv:1111.7206.
    5. Concentrating Energy by Measurement,
      A. Beige, A. Capolupo, A. Kurcz, E. Del Giudice, and G. Vitiello, AIP Conf. Proc. 1446, 353 (2012). arXiv:1012.5868.
    6. Coherent cavity networks with complete connectivity,
      E. S. Kyoseva, A. Beige, and L. C. Kwek, New J. Phys. 14, 023023 (2012). arXiv:1103.1969.

    1. Improved Eavesdropping Detection in Quantum Key Distribution,
      M. M. Khan, J. Xu, and A. Beige. arXiv:1112.1110.
    2. Laser cooling of a trapped particle with increased Rabi frequencies,
      T. Blake, A. Kurcz, N. S. Saleem, and A. Beige, Phys. Rev. A 84, 053416 (2011). arXiv:1103.0410.
    3. Composite quantum systems and environment-induced heating,
      A. Beige, A. Kurcz, and A. Stokes, AIP Conf. Proc. 1389, 969 (2011). arXiv:1110.1551.
    4. Cooling atom-cavity systems into entangled states,
      J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, Phys. Rev. A 84, 022316 (2011). arXiv:1105.5151.
    5. Emission of photons through cavity mirrors in the absence of external driving,
      A. Beige, A. Capolupo, A. Kurcz, E. Del Giudice, and G. Vitiello, J. Phys.: Conf. Ser. 306, 012072 (2011). arXiv:1102.4254.
    6. Comparing cavity and ordinary laser cooling,
      T. Blake, A. Kurcz, and A. Beige, J. Mod. Opt. 58, 1317 (2011). arXiv:1006.3008.
    7. Hidden Quantum Markov Models and non-adaptive read-out of many-body states,
      A. Monras, A. Beige, and K. Wiesner, Appl. Math. and Comp. Sciences 3, 93 (2011). arXiv:1002.2337.

    1. Protecting subspaces by acting on the outside,
      J. Busch and A. Beige, J. Phys.: Conf. Ser. 254, 012009 (2010). arXiv:1002.3479.
    2. Generating single-mode behavior in fiber-coupled optical cavities,
      J. Busch and A. Beige, Phys. Rev. A 82, 053824 (2010). arXiv:1009.1011.
    3. Rotating wave approximation and entropy,
      A. Kurcz, A. Capolupo, A. Beige, E. Del Giudice, and G. Vitiello, Phys. Lett. A 374, 3726 (2010). arXiv:1001.3944.
    4. Enhancing laser sideband cooling in one-dimensional optical lattices via the dipole interaction,
      R. N. Palmer and A. Beige, Phys. Rev. A 81, 053411 (2010). arXiv:1001.2493.
    5. Energy concentration in composite quantum systems,
      A. Kurcz, A. Capolupo, A. Beige, E. Del Giudice, and G. Vitiello, Phys. Rev. A 81, 063821 (2010). arXiv:0909.5337.

    1. Quantum Optical Heating in Sonoluminescence Experiments,
      A. Kurcz, A. Capolupo, and A. Beige, AIP Conf. Proc. 31, 1114 (2009). arXiv:0904.1121.
    2. Sonoluminescence and quantum optical heating,
      A. Kurcz, A. Capolupo, and A. Beige, New J. Phys. 11, 053001 (2009). arXiv:0904.0885.
    3. Cooling atoms into entangled state,
      G. Vacanti and A. Beige, New J. Phys. 11, 083008 (2009). arXiv:0903.2796.
    4. High error-rate quantum key distribution for long-distance communication,
      M. M. Khan, M. Murphy, and A. Beige, New J. Phys. 11, 063043 (2009). arXiv:0901.3909.

    1. Entangling distant quantum dots using classical interference,
      J. Busch, E. S. Kyoseva, M. Trupke, and A. Beige, Phys. Rev. A 78, 040301(R) (2008). arXiv:0801.0942.

    1. Atomic cluster state build up with macroscopic heralding,
      J. Metz, C. Schön, and A. Beige, Phys. Rev. A 76, 052307 (2007). arXiv:0707.4069.
    2. Towards quantum computing with single atoms and optical cavities on atom chips,
      M. Trupke, J. Metz, A. Beige, and E. A. Hinds, J. Mod. Opt. 54, 1639 (2007). arXiv:quant-ph/0607197.
    3. Macroscopic quantum jumps and entangled state preparation,
      J. Metz and A. Beige, Phys. Rev. A 76, 022331 (2007). arXiv:quant-ph/0702095.
    4. A repeat-until-success quantum computing scheme,
      A. Beige, Y. L. Lim, and L. C. Kwek, New J. Phys. 9, 197 (2007).
    5. Multi-photon entanglement from distant single photon sources on demand,
      A. Beige, Y. L. Lim, and C. Schön, J. Mod. Opt. 54, 397 (2007). arXiv:quant-ph/0406047.

    1. Single-qubit rotations in 2D optical lattices with multi-qubit addressing,
      J. Joo, Y. L. Lim, A. Beige, and P. L. Knight, Phys. Rev. A 74, 042344 (2006). arXiv:quant-ph/0601100.
    2. Quantum computing without qubit-qubit interactions,
      A. Beige in Quantum Theory and Symmetries IV, edited by V. K. Dobrev, Heron Press, Sofia, p. 22. (2006). arXiv:cond-mat/0512121.
    3. Robust entanglement through macroscopic quantum jumps,
      J. Metz, M. Trupke, and A. Beige, Phys. Rev. Lett. 97, 040503 (2006). arXiv:quant-ph/0510051.
    4. Repeat-Until-Success quantum computing using stationary and flying qubits,
      Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek, Phys. Rev. A 73, 012304 (2006). arXiv:quant-ph/0508218.

    1. Generalised Hong-Ou-Mandel Experiments with Bosons and Fermions,
      Y. L. Lim and A. Beige, New J. Phys. 7, 155 (2005). arXiv:quant-ph/0505034.
    2. Cooling many particles to very low temperatures,
      A. Beige, P. L. Knight, and G. Vitiello, Brazilian J. Phys. 35, 403 (2005). arXiv:quant-ph/0412100.
    3. Repeat-until-success linear optics distributed quantum computing,
      Y. L. Lim, A. Beige, and L. C. Kwek, Phys. Rev. Lett. 95, 030505 (2005). arXiv:quant-ph/0408043.
    4. Postselected multiphoton entanglement through Bell-multiport beam splitters,
      Y. L. Lim and A. Beige, Phys. Rev. A 71, 062311 (2005). quant-ph/0406047.
    5. An efficient quantum filter for multiphoton states,
      Y. L. Lim and A. Beige, J. Mod. Opt. 52, 1073 (2005). arXiv:quant-ph/0406008.
    6. Cooling many particles at once,
      A. Beige, P. L. Knight, and G. Vitiello, New J. Phys. 7, 96 (2005). arXiv:quant-ph/0404160.
    7. Speeding up gate operations through dissipation,
      A. Beige, H. Cable, C. Marr, and P. L. Knight, Laser Phys. 15, 162 (2005). arXiv:quant-ph/0405186.
    8. Photon polarisation entanglement from distant dipole sources,
      Y. L. Lim and A. Beige, J. Phys. A 38, L7 (2005). arXiv:quant-ph/0308095.

    1. Push button generation of multiphoton entanglement,
      Y. L. Lim and A. Beige, Proc. SPIE 5436, 118 (2004). arXiv:quant-ph/0403125.
    2. Decoherence-free dynamical and geometrical entangling phase gates,
      J. Pachos and A. Beige, Phys. Rev. A 69, 033817 (2004). arXiv:quant-ph/0309180.
    3. Ion-trap quantum computing in the presence of cooling,
      A. Beige, Phys. Rev. A 69, 012303 (2004). arXiv:quant-ph/0304168.

    1. Quantum computing using dissipation,
      A. Beige, Inst. Phys. Conf. Ser. 173, 35 (2003). arXiv:quant-ph/0306125.
    2. Entangled state preparation via dissipation-assisted adiabatic passages,
      C. Marr, A. Beige, and G. Rempe, Phys. Rev. A 68, 033817 (2003). arXiv:quant-ph/0305116.
    3. Dissipation-assisted quantum computation in atom-cavity systems,
      A. Beige, H. Cable, and P. L. Knight, Proc. SPIE 5111, 370 (2003). arXiv:quant-ph/0303151.
    4. Dissipation-assisted quantum gates with cold trapped ions,
      A. Beige, Phys. Rev. A 67, 020301(R) (2003). arXiv:quant-ph/0205070.

    1. Communicating with qubit pairs,
      A. Beige, B.-G. Englert, C. Kurtsiefer, and H. Weinfurter, in Mathematics pf Quantum Computation, edited by R. K. Brylinski and G. Chen, p. 359, Chapman and Hall/CRC Press (2002).
    2. Spontaneous emission of an atom in front of a mirror,
      A. Beige, J. Pachos, and H. Walther, Phys. Rev. A 66, 063801 (2002). arXiv:quant-ph/0206080.
    3. Secure communication with single-photon two-qubit states,
      A. Beige, B.-G. Englert, C. Kurtsiefer, and H. Weinfurter, J. Phys. A 35, L407 (2002). arXiv:quant-ph/0111106.
    4. Interference of spontaneously emitted photons,
      A. Beige, C. Schön, and J. Pachos, Fortschr. Phys. 50, 594 (2002). arXiv:quant-ph/0112078.
    5. Secure communication with a publicly known key,
      A. Beige, B.-G. Englert, C. Kurtsiefer, and H. Weinfurter, Acta Physica Polonica 101, 357 (2002). arXiv:quant-ph/0101066.
    6. Quantum computing in a macroscopic dark period,
      B. Tregenna, A. Beige, and P. L. Knight, Phys. Rev. A 65, 032305 (2002). arXiv:quant-ph/0109006.

    1. Double jumps and transition rates for two dipole-interacting atoms,
      S. Addicks, A. Beige, M. Dakna, and G. C. Hegerfeldt, Eur. Phys. J. D 15, 393 (2001). arXiv:quant-ph/0002093.
    2. Analysis of a two-atom double-slit experiment based on environment-induced measurements,
      C. Schön and A. Beige, Phys. Rev. A 64, 023806 (2001). arXiv:quant-ph/0104076.
    3. Verifying atom entanglement schemes by testing Bell's inequality,
      D. Angelakis, A. Beige, P. L. Knight, W. J. Munro, and B. Tregenna, Z. Naturforsch. 56a, 27 (2001). arXiv:quant-ph/0006054.

    1. Bell's inequality test with entangled atoms,
      A. Beige, W. J. Munro, and P. L. Knight, Phys. Rev. A 62, 052102 (2000). arXiv:quant-ph/0006054.
    2. Entangling atoms and ions in dissipative environments,
      A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, J. Mod. Opt. 47, 2583 (2000). arXiv:quant-ph/0007082.
    3. Quantum computing using dissipation to remain in a decoherence-free subspace,
      A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Phys. Rev. Lett. 85, 1762 (2000). arXiv:quant-ph/0004043.
    4. Driving atoms into decoherence-free states,
      A. Beige, D. Braun, and P. L. Knight, New J. Phys. 2, 22 (2000). arXiv:quant-ph/9912004.
    5. Coherent manipulation of two dipole-dipole interacting ions,
      A. Beige, S. F. Huelga, P. L. Knight, M. B. Plenio, and R. C. Thompson, J. Mod. Opt. 47, 401 (2000). arXiv:quant-ph/9903059.

    1. Cavity loss induced generation of entangled atoms,
      M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Phys. Rev. A 59, 2468 (1999). arXiv:quant-ph/9811003.
    2. Cooperative effects in the light and dark periods of two dipole-interacting atoms,
      A. Beige and G. C. Hegerfeldt, Phys. Rev. A 59, 2385 (1999). arXiv:quant-ph/9903034.

    1. Transition from antibunching to bunching for two dipole-interacting atoms,
      A. Beige and G. C. Hegerfeldt, Phys. Rev. A 58, 4133 (1998). arXiv:quant-ph/9806037.

    1. Atomic quantum Zeno effect for ensembles and single systems,
      A. Beige, G. C. Hegerfeldt, and D. G. Sondermann, Found. Phys. 263, 1671 (1997). arXiv:quant-ph/9610003.
    2. Quantum Zeno effect and light-dark periods for a single atom,
      A. Beige and G. C. Hegerfeldt, J. Phys. A 30, 1323 (1997). arXiv:quant-ph/9611020.
    3. State measurements with short laser pulses and lower-efficiency photon detectors,
      A. Beige and G. C. Hegerfeldt, J. Mod. Opt. 44, 345 (1997). arXiv:atom-ph/9607001.

    1. Laser pulses as measurements. Application to the quantum Zeno effect,
      A. Beige, G. C. Hegerfeldt, and D. G. Sondermann, Quantum Sem. Opt. 8, 999 (1996). arXiv:quant-ph/9607006.
    2. Projection postulate and atomic quantum Zeno effect,
      A. Beige and G. C. Hegerfeldt, Phys. Rev. A 53, 53 (1996). arXiv:quant-ph/9512012.