Publications
For an up-to-date publication list see arXiv and Twitter
[52] Quantum many-body scars, Christopher J. Turner, Alexios A. Michailidis, Dmitry A. Abanin, Maksym Serbyn, Zlatko Papic, arXiv:1711.03528
[51] Imaging anyons with scanning tunneling microscopy, Zlatko Papić, Roger S. K. Mong, Ali Yazdani, Michael P. Zaletel, arXiv:1709.07013
[50] Slow Dynamics in Translation-Invariant Quantum Lattice Models, Alexios A. Michailidis, Marko Žnidarič, Mariya Medvedyeva, Dmitry A. Abanin, Tomaž Prosen, Z. Papić, arXiv:1706.05026
[49] Free-fermion descriptions of parafermion chains and string-net models, Konstantinos Meichanetzidis, Christopher J. Turner, Ashk Farjami, Zlatko Papić, Jiannis K. Pachos, arXiv:1705.09983
[48] Recent progress in many-body localization, Dmitry A. Abanin, Zlatko Papić (Invited overview article for the Special Volume of Annalen der Physik on Many-Body Localization) arXiv:1705.09103
[47] Emergence of Chiral Spin Liquids via Quantum Melting of Non-Coplanar Magnetic Orders, Ciarán Hickey, Lukasz Cincio, Zlatko Papić, Arun Paramekanti, Phys. Rev. B 96, 115115 (2017), arXiv:1705.05381
[46] Fractionalized exciton Fermi surfaces and condensates in two-component quantized Hall states, Maissam Barkeshli, Chetan Nayak, Zlatko Papic, Andrea Young, Michael Zaletel, arXiv:1611.01171
[45] Thouless energy and multifractality across the many-body localization transition, Maksym Serbyn, Z. Papić, Dmitry A. Abanin, Phys. Rev. B 96, 104201 (2017), arXiv:1610.02389
[44] Generalized Pseudopotentials for the Anisotropic Fractional Quantum Hall Effect, Bo Yang, Zi-Xiang Hu, Ching Hua Lee, Zlatko Papic, Phys. Rev. Lett. 118, 146403 (2017) [Editors' Suggestion] arXiv:1609.06730
[43] Explicit construction of local conserved operators in disordered many-body systems, T. E. O'Brien, Dmitry A. Abanin, Guifre Vidal, Z. Papić, Phys. Rev. B 94, 144208 (2016), arXiv:1608.03296
[42] Optimal free models for many-body interacting theories, Christopher J. Turner, Konstantinos Meichanetzidis, Zlatko Papic, Jiannis K. Pachos, Nature Communications 8, 14926 (2017), arXiv:1607.02679
[41] Power-Law Entanglement Spectrum in Many-Body Localized Phases, Maksym Serbyn, Alexios A. Michailidis, Dmitry A. Abanin, Z. Papić, Phys. Rev. Lett. 117, 160601 (2016), arXiv:1605.05737
[40] Electron-solid and electron-liquid phases in graphene, M. E. Knoester, Z. Papic, C. Morais Smith, arXiv:1601.07130, Phys. Rev. B 93, 155141 (2016).
[39] Probing the geometry of the Laughlin state, Sonika Johri, Z. Papic, P. Schmitteckert, R. N. Bhatt, F. D. M. Haldane, arXiv:1512.08698, New J. Phys. 18, 025011 (2016).
[38] Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid, Ciarán Hickey, Lukasz Cincio, Zlatko Papić, Arun Paramekanti, arXiv:1509.08461, Phys. Rev. Lett. 116, 137202 (2016).
[37] Meron deconfinement in the quantum Hall bilayer at intermediate distances, M. V. Milovanovic, E. Dobardzic, Z. Papic, arXiv:1509.01921, Phys. Rev. B 92, 195311 (2015).
[36] A criterion for many-body localization-delocalization phase transition, Maksym Serbyn, Z. Papić, Dmitry A. Abanin, arXiv:1507.01635, Phys. Rev. X 5, 041047 (2015).
[35] Fibonacci anyons and charge density order in the 12/5 and 13/5 plateaus, Roger S. K. Mong, Michael P. Zaletel, Frank Pollmann, Zlatko Papić, arXiv:1505.02843
[34] Geometric construction of Quantum Hall clustering Hamiltonians, Ching Hua Lee, Zlatko Papić, Ronny Thomale, arXiv:1502.04663, Phys. Rev. X 5, 041003 (2015).
[33] Competing Abelian and non-Abelian topological orders in nu=1/3+1/3 quantum Hall bilayers, Scott Geraedts, Michael P. Zaletel, Zlatko Papić, Roger S. K. Mong, arXiv:1502.01340, Phys. Rev. B 91, 205139 (2015).
[32] Many-body localization in disorder-free systems: the importance of finite-size constraints, Z. Papic, E. M. Stoudenmire, Dmitry A. Abanin, arXiv:1501.00477, Annals of Physics 362, 714 (2015).
[31] Many-body localization in periodically driven systems, Pedro Ponte, Z. Papić, François Huveneers, Dmitry A. Abanin,arXiv:1410.8518, Phys. Rev. Lett. 114, 140401 (2015).
[30] Quantum quenches in the many-body localized phase, Maksym Serbyn, Z. Papić, Dmitry A. Abanin, arXiv:1408.4105, Phys. Rev. B 90, 174302 (2014).
[29] Solvable models for unitary and non-unitary topological phases, Z. Papic, arXiv:1406.5729, Phys. Rev. B 90, 075304 (2014).
[28] The single-mode approximation for fractional Chern insulators and the fractional quantum Hall effect on the torus, C. Repellin, T. Neupert, Z. Papic, N. Regnault, arXiv:1404.4658, Phys. Rev. B 90, 045114 (2014).
[27] Periodically driven ergodic and many-body localized quantum systems, Pedro Ponte, Anushya Chandran, Z. Papić, Dmitry A. Abanin, arXiv:1403.6480, Annals of Physics 353, 196 (2015).
[26] Tunable Fractional Quantum Hall Phases in Bilayer Graphene, Patrick Maher, Lei Wang, Yuanda Gao, Carlos Forsythe, Takashi Taniguchi, Kenji Watanabe, Dmitry Abanin, Zlatko Papić, Paul Cadden-Zimansky, James Hone, Philip Kim, Cory R. Dean, arXiv:1403.2112, Science 345, 61 (2014).
[25] Interferometric probes of many-body localization, M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao, C. R. Laumann, D. A. Abanin, M. D. Lukin, E. A. Demler, arXiv:1403.0693, Phys. Rev. Lett. 113, 147204 (2014).
[24] Quasiholes of 1/3 and 7/3 quantum Hall states: size estimates via exact diagonalization and density-matrix renormalization group, Sonika Johri, Zlatko Papić, R. N. Bhatt, P. Schmitteckert, arXiv:1310.2263, Phys. Rev. B 89, 115124 (2014).
[23] Topological Phases in the Zeroth Landau Level of Bilayer Graphene, Z. Papić, D. A. Abanin, arXiv:1307.2909, Phys. Rev. Lett. 112, 046602 (2014).
[22] Local conservation laws and the structure of the many-body localized states, Maksym Serbyn, Z. Papić, Dmitry A. Abanin, arXiv:1305.5554, Phys. Rev. Lett. 111, 127201 (2013).
[21] Fractional quantum Hall effect in a tilted magnetic field, Z. Papic, arXiv:1305.2217, Phys. Rev. B 87, 245315 (2013).
[20] Universal slow growth of entanglement in interacting strongly disordered systems, Maksym Serbyn, Z. Papić, Dmitry A. Abanin, arXiv:1304.4605, Phys. Rev. Lett. 110, 260601 (2013).
[19] Matrix Product States for Trial Quantum Hall States, B. Estienne, Z. Papic, N. Regnault, B. A. Bernevig, arXiv:1211.3353, Phys. Rev. B 87, 161112(R) (2013).
[18] Quantum Phase Transitions and the ν=5/2 Fractional Hall State in Wide Quantum Wells, Z. Papic, F. D. M. Haldane, E. H. Rezayi, arXiv:1209.6606, Phys. Rev. Lett. 109, 266806 (2012).
[17] Numerical studies of the fractional quantum Hall effect in systems with tunable interactions, Z. Papic, D. A. Abanin, Y. Barlas, R. N. Bhatt, arXiv:1207.7282, review for the CCP2011 conference, to appear in "Journal of Physics: Conference Series"
[16] Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems, Bo Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, F. D. M. Haldane, arXiv:1202.5586, Phys. Rev. B 85, 165318 (2012).
[15] Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries, Zi-Xiang Hu, Z. Papic, S. Johri, R. N. Bhatt, Peter Schmitteckert, arXiv:1202.4697, Phys. Lett. A 376, 2157(2012).
[14] Stability of the k=3 Read-Rezayi state in chiral two-dimensional systems with tunable interactions, D. A. Abanin, Z. Papić, Y. Barlas, R. N. Bhatt, arXiv:1201.6598, New J. Phys. 14, 025009 (2012).
[13] Model Wavefunctions for the Collective Modes and the Magneto-roton Theory of the Fractional Quantum Hall Effect, Bo Yang, Zi-Xiang Hu, Z. Papic, F. D. M. Haldane, arXiv:1201.4165, Phys. Rev. Lett. 108, 256807 (2012).
[12] Tunable interactions and phase transitions in Dirac materials in a magnetic field, Z. Papić, D. A. Abanin, Y. Barlas, R. N. Bhatt, arXiv:1108.1339, Phys. Rev. B 84, 241306(R) (2011).
[11] Tunable Electron Interactions and Fractional Quantum Hall States in Graphene, Z. Papic, R. Thomale, D. A. Abanin, arXiv:1102.3211, Phys. Rev. Lett. 107, 176602 (2011).
[10] Topological Entanglement in Abelian and non-Abelian Excitation Eigenstates, Z. Papic, B. A. Bernevig, N. Regnault, arXiv:1008.5087, Phys. Rev. Lett. 106, 056801 (2011).
[9] Fractional quantum Hall effects in bilayers in the presence of inter-layer tunneling and charge imbalance, Michael R. Peterson, Z. Papic, S. Das Sarma, arXiv:1008.0650, Physical Review B 82, 235312 (2010).
[8] Atypical Fractional Quantum Hall Effect in Graphene at Filling Factor 1/3, Z. Papic, M. O. Goerbig, N. Regnault, arXiv:1005.5121, Phys. Rev. Lett. 105, 176802 (2010).
[7] Transition from two-component 332 Halperin state to one-component Jain state at filling factor ν=2/5, M.V. Milovanović, Z. Papić, arXiv:1003.3315, Phys. Rev. B 82, 035316 (2010).
[6] Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite Fermi liquid phases, Z. Papic, M. O. Goerbig, N. Regnault, M. V. Milovanovic, arXiv:0912.3103, Phys. Rev. B 82, 075302 (2010).
[5] Interaction-tuned compressible-to-incompressible phase transitions in the quantum Hall systems, Z. Papić, N. Regnault, S. Das Sarma, arXiv:0907.4603, Phys. Rev. B 80, 201303 (2009).
[4] Fractional quantum Hall state at ν=1/4 in a wide quantum well, Z. Papic, G. Moller, M. V. Milovanovic, N. Regnault, M. O. Goerbig, arXiv:0903.4415, Phys. Rev. B 79, 245325 (2009).
[3] Theoretical expectations for a fractional quantum Hall effect in graphene, Z. Papić, M. O. Goerbig, N. Regnault, arXiv:0902.3233, Solid State Comm. 149, 1056 (2009).
[2] Nonperturbative approach to the quantum Hall bilayer, M. V. Milovanović, Z. Papić, arXiv:0710.0478 , Phys. Rev. B 79, 115319 (2009).
[1] Quantum disordering of the 111 state and the compressible-incompressible transition in quantum Hall bilayer systems, Zlatko Papic, Milica V. Milovanovic, arXiv:cond-mat/0702042, Phys. Rev. B 75, 195304 (2007).